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Abstract

BCPL is a simple systems programming language with a small fast compiler which
is easily ported to new machines. The language was first implemented in 1967
and has been in continuous use since then. It is a typeless and provides machine
independent pointer arithmetic allowing a simple way to represent vectors and
structures. BCPL functions are recursive and variadic but, like C, do not allow
dynamic free variables, and so can be represented by just their entry addresses.
There is no built-in garbage collector and all input-output is done using library
calls.

This document describes the new revised version of the BCPL Cintcode Sys-
tem giving a definition of the language, its library and running environment.
It also describes a native code version of the system and the Cintpos portable
operating system. Installation instructions are included.
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Preface

The concept for BCPL originated in 1966 and was first outlined in my PhD
thesis [4]. Its was first implemented early in 1967 when I was working at M.I.T.
Its heyday was perhaps from the mid 70s to the mid 80s, but even now it is still
continues to be used at some universities, in industry and by private individuals.
It is a useful language for experimenting with algorithms and for research in
optimizing compilers. Cintpos is the multi-tasking version of the system based
on the Tripos [5]. It is simple and easy to maintain and can be used for real-time
applications such as process control. BCPL was designed many years ago but is
still useful in areas where small size, simplicity and portability are important.

This document is intended to provide a record of the main features of the
BCPL in sufficient depth to allow a serious reader to obtain a proper understand-
ing of philosophy behind the language. An efficient interpretive implementation
is presented, the source of which is freely available via my home page [3]. The
implementation is machine independent and should be easy to transfer to almost
any architecture both now and in the future.

The main topics covered by this report are:

• A specification of the BCPL language.

• A description of its runtime library and the extensions used in the Cintpos
system.

• The design and implementation of command language interpreters for both
the single and multi-threaded versions of the system.

• A description of OCODE, the intermediate code used in the compiler, and
Cintcode, the compact byte stream target code used by the interpreter.

• A description of the single and multi-threaded interactive debugger and
other debugging aids.

• The efficient implementation of the Cintcode interpreter for several proces-
sors including both RISC and i386/Pentium based machines.

• The profiling and statistics gathering facilities offered by the system.

v



vi CONTENTS

• The SIAL intermediate code that allows easy translation of BCPL in native
code for most architectures.

• The MC package that allows machine independent dynamic compilation
and execution of native machine code.



Chapter 1

The System Overview

This document contains a full description of an interpretive implementation of
BCPL that supports a command language and low level interactive debugger. As
an introduction, an example console session is presented to exhibit some of the
key features of the single threaded version of the system.

1.1 A Console Session

When the system is started (on a machine called meopham) in the directory
bcplprogs/demo, its opening message is as follows:

meopham$ cintsys

BCPL Cintcode System (25 Jan 2007)
0>

The characters 0> are followed by a space character and is the command
language prompt string inviting the user to type a command. The integer gives
the execution time of the preceeding command. A program to compute factorials
can be displayed using the type command as follows:

> type fact.b
GET "libhdr"

LET start() = VALOF
{ FOR i = 1 TO 5 DO writef("fact(%n) = %i4*n", i, fact(i))
RESULTIS 0

}

AND fact(n) = n=0 -> 1, n*fact(n-1)
0>

The directive GET "libhdr" causes the standard library declarations to be
inserted at that position. The text:

1



2 CHAPTER 1. THE SYSTEM OVERVIEW

LET start() = VALOF

is the heading for the declaration of the function start which, by convention, is
the first function to be called when a program is run. The empty parentheses ()
indicate that the routine expects no arguments. The text

FOR i = 1 TO 5 DO

introduces a for-loop whose control variable i successively takes the values from
1 to 5. The body of the for-loop is calls the library routine writef whose effect
is to output the format string after replacing the substitution items %n and %i4

by appropriately formatted representations of i and fact(i). Within the string
*n represents the newline character. The statement RESULTIS 0 exits from the
VALOF construct providing the result of start that indicates the program com-
pleted successfully. The text:

AND fact(n) =

introduces the definition of the function fact which take one argument (n) and
yields n factorial. The word AND causes fact to available to the previously defined
function. This program can be compiled by using the following command:

10> bcpl fact.b to fact

BCPL (10 June 2004)
Code size = 104 bytes
10>

This command compiles the source file fact.b creating an executable object
module in the file called fact. The program can then be run by simply typing
the name of this file.

10> fact
fact(1) = 1
fact(2) = 2
fact(3) = 6
fact(4) = 24
fact(5) = 120
0>

When the BCPL compiler is invoked, it can be given additional arguments
that control the compiler options. One of these (d1) directs the compiler to
output the compiled code in a readable form, as follows:

10> bcpl fact.b to fact d1

BCPL (10 June 2004)
0: DATAW 0x00000000
4: DATAW 0x0000DFDF
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8: DATAW 0x6174730B
12: DATAW 0x20207472
16: DATAW 0x20202020

// Entry to: start
20: L1:
20: L1
21: SP3
22: L4:
22: LP3
23: LF L2
25: K9
26: SP9
27: LP3
28: SP8
29: LLL L9920
31: K4G 94
33: L1
34: AP3
35: SP3
36: L5
37: JLE L4
39: L0
40: RTN
44: L9920:
44: DATAW 0x6361660F
48: DATAW 0x6E252874
52: DATAW 0x203D2029
56: DATAW 0x0A346925
60: DATAW 0x0000DFDF
64: DATAW 0x6361660B
68: DATAW 0x20202074
72: DATAW 0x20202020

// Entry to: fact
76: L2:
76: JNE0 L5
78: L1
79: RTN
80: L5:
80: LM1
81: AP3
82: LF L2
84: K4
85: LP3
86: MUL
87: RTN
88: L3:
88: DATAW 0x00000000
92: DATAW 0x00000001
96: DATAW 0x00000014
100: DATAW 0x0000005E
Code size = 104 bytes
20>

This output shows the sequence of CINTCODE instructions compiled for the two
procedures defined in the factorial program. In addition to the instructions, there
are some data words holding the string constant, initialisation data and symbolic
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information for the debugger. The data word at location 4 holds a special bit
pattern indicating the presence of a procedure name placed just before the entry
point. As can be seen the procedure in this case is start. Similar information is
packed at location 60 for the function fact. Most Cintcode instructions occupy
one byte and perform simple operations on the registers and memory of the
Cintcode machine. For instance, the first two instructions of start (L1 and SP3

at locations 20 and 11) load the constant 1 into the Cintcode A register and then
stores it at word 3 of the current stack frame (pointed to by P). This corresponds
to the initialisation of the for-loop control variable i. The start of the for-loop
body has label L4 corresponding to location 22. The compilation of fact(i)

is LP3 LF L2 K9 which loads i and the entry address of fact and enters the
function incrementing P by 9 locations). The result of this function is returned in
A which is stored in the stack using SP9 in the appropriate position for the third
argument of the call of writef. The second argument, i, is setup using LP3 SP8,
and the first argument which is the format string is loaded by LLL L9920. The
next instruction (K4G 94) causes the routine writef, whose entry point is in
global variable 94, to be called incrementing P by 4 words as it does so. Thus the
compilation of the call writef("fact(%n) = %i5*n", i, f(i)) occupies just
11 bytes from location 22 to 32, plus the 16 bytes at location 44 where the string
is packed. The next three instructions (L1 AP3 SP3) increment i and L5 JNE L4

jumps to label L4 if i is still less than 5. If the jump is not taken, control falls
through to the instructions L0 RTN causing start to return with result 0. Each
instruction of this function occupies one byte except for the LF, LLL, K4G and JNE

instructions which each occupy two. The body of the function fact is equally
easy to understand. It first tests whether its argument is zero (JNE0 L5). If it is,
it returns one (L1 RTN). Otherwise, it computes n-1 by loading -1 and adding
n (LM1 AP3) before calling fact (LF L2 K4). The result is then multiplied by n

(LP3 MUL) and returning (RTN). The space occupied by this code is just 12 bytes.
The debugger can be entered using the abort command.

20> abort

!! ABORT 99: User requested
*

The asterisk is the prompt inviting the user to enter a debugging command. The
debugger provides facilities for inspecting and changing memory as well as setting
breakpoints and performing single step execution. As an example, a breakpoint
is placed at the first instruction of the routine clihook which is used by the
command language interpreter (CLI) to transfer control to a command. Consider
the following commands:

* g4 b1
* b
1: clihook
*
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This first loads the entry point of clihook (held in global variable 4) and sets
(b1) a breakpoint numbered 1 at this position. The command b, without an
argument, lists the current breakpoints confirming that the correct one has been
set. Normal execution is continued using the c command.

* c
20>

If we now try to execute the factorial program, we immediately hit the break-
point.

0> fact

!! BPT 1: clihook
A= 0 B= 0 15740: K4G 1

*

This indicates that the breakpoint occured when the Cintcode registers A and
B were both zero, and that the program counter is set to 15740 where the next
instruction to be obeyed is K6G 1. Single step exection can now be performed
using the \ command.

* \A= 0 B= 0 42036: L1
* \A= 1 B= 0 42037: SP3
* \A= 1 B= 0 42038: LP3
*

After each single step execution a summary of the current state is printed. In the
above sequence we see that the execution of the instruction L1 loading 1 into the
A register. The execution of SP3 does not have an immediately observable effect
since it updates a local variable held in the current stack frame, but the stack
frame can be displayed using the t command.

* p t4

P 0: 42164 15742 start 1
*

This confirms that location P3 contains the value 1 corresponding to the initial
value of the for-loop control variable i. At this stage it is possible to change its
value to 3, say.

* 3 sp3
* p t4

P 0: 42164 15742 start 3
*

If single stepping is continued for a while we observe the evaluation of the
recursive call fact(3).
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* \A= 3 B= 1 42039: LF 42092
* \A= fact B= 3 42041: K9
* \A= 3 B= 3 42092: JNE0 42096
* \A= 3 B= 3 42096: LM1
* \A= -1 B= 3 42097: AP3
* \A= 2 B= 3 42098: LF 42092
* \A= fact B= 2 42100: K4
* \A= 2 B= 2 42092: JNE0 42096
* \A= 2 B= 2 42096: LM1
* \A= -1 B= 2 42097: AP3
* \A= 1 B= 2 42098: LF 42092
* \A= fact B= 1 42100: K4
* \A= 1 B= 1 42092: JNE0 42096
* \A= 1 B= 1 42096: LM1
* \A= -1 B= 1 42097: AP3
* \A= 0 B= 1 42098: LF 42092
* \A= fact B= 0 42100: K4
* \A= 0 B= 0 42092: JNE0 42096
* \A= 0 B= 0 42094: L1
* \A= 1 B= 0 42095: RTN
* \A= 1 B= 0 42101: LP3
* \A= 1 B= 1 42102: MUL
* \A= 1 B= 1 42103: RTN
* \A= 1 B= 1 42101: LP3
* \A= 2 B= 1 42102: MUL
* \A= 2 B= 1 42103: RTN
* \A= 2 B= 1 42101: LP3
* \A= 3 B= 2 42102: MUL
* \A= 6 B= 2 42103: RTN
* \A= 6 B= 2 42042: SP9
* \A= 6 B= 2 42043: LP3
* \A= 3 B= 6 42044: SP8
* \A= 3 B= 6 42045: LLL 42060
* \A= 10515 B= 3 42047: K4G 94
*

At this moment the routine writef is just about to be entered to print an message
about factorial 3. We can unset breakpoint 1 and continue normal execution by
typing 0b1 c.

* 0b1 c
fact(1) = 1
fact(4) = 24
fact(5) = 120
10>

Notice that fact(1) is the first to be written since it has already been evaluated,
but the next time round the FOR loop i has value 4 since i was updated during
the debugging session.

As one final example in this session we will re-compile the BCPL compiler.

10> bcpl ../../cintcode/com/bcpl.b to junk

BCPL (10 June 2004)
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Code size = 10848 bytes
Code size = 9680 bytes
Code size = 12764 bytes
540>

This shows that the total size of the compiler is 33,292 bytes and that it can be
compiled (on a 1GHz Pentium machine) in 0.54 seconds. Since this involves exe-
cuting 27,188,756 Cintcode instructions, the rate is just over 50 million Cintcode
instructions per second with the current interpreter.
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Chapter 2

The BCPL Language

The design of BCPL owes much to the work done jointly by Cambridge and Lon-
don Universities on CPL (originally Cambridge Programming Language) which
was conceived at Cambridge to be the main language to run on the new and
powerful Ferranti Atlas computer to be installed in 1963. At that time there was
another Atlas computer in London and it was decided to make the development of
CPL a joint project between the two Universities. As a result the name changed to
Combined Programming Language. It could reasonably be called Christopher’s
Programming Language in recognition of Christpher Strachey whose bubbling
enthusiasm and talent steered the course of its development.

CPL was an ambitious language in the ALGOL tradition but with many novel
and significant extensions intended to make its area of application more general.
These included a greater richness in control constructs such as the now well known
IF, UNLESS, WHILE, UNTIL, REPEATWHILE, SWITCHON statements. It could handle
a wide variety of data types including string and bit patterns and was one of the
first strictly typed languages to provided a structure mechanism that permitted
convenient handling of lists, trees and directed graphs. Work on CPL ran from
about 1961 to 1967, but was hampered by a number of factors that eventually
killed it. It was, for instance, too large and complicated for the machines available
at the time, and the desire for elegance and mathematical cleanliness outweighed
the more pragmatic arguments for efficiency and implementability. Much of the
implementation was done by research students who came and left during the
lifetime of the project. As soon as they knew enough to be useful they had to
transfer their attention to writing their theses. Another problem (that became
of particular interest to me) was that the implementation had to move from
EDSAC II to the Atlas computer about halfway through the project. The CPL
compiler thus needed to be portable. This was achieved by writing it in a simple
subset of CPL which was then hand translated into a sequence of low level macro
calls that could be expanded into the assembly language of either machine. The
macrogenerator used was GPM[6] which was designed by Strachey specifically
for this task. It was a delightfully elegant work of art in its own right and is

9



10 CHAPTER 2. THE BCPL LANGUAGE

well worth study. A variant of GPM, called BGPM, is included in the standard
BCPL distribution.

BCPL was initially similar to the subset of CPL used in the encoding of
the CPL compiler. An outline of BCPL’s main features first appeared in my
PhD thesis [4] in 1966 but it was not fully designed and implemented until early
the following year when I was working at Project MAC of the Massachussetts
Institute of Technology. Its first implementation was written in Ross’s Algol
Extended for Design (AED-0)[1] which was the only language then available on
CTSS, the time sharing system at Project MAC, other than LISP that allowed
recursion.

2.1 Language Overview

A BCPL program is made up of separately compiled sections, each consisting of a
list of declarations that define the constants, static data and functions belonging
to the section. Within functions it is possible to declare dynamic variables and
vectors that exist only as long as they are required. The language is designed so
that these dynamic quantities can be allocated space on a runtime stack. The
addressing of these quantities is relative to the base of the stack frame belonging
to the current function activation. For this to be efficient, dynamic vectors have
sizes that are known at compile time. Functions may be called recursively and
their arguments are called by value. The effect of call by reference can be achieved
by passing pointers. Input and output and other system operations are provided
by means of library functions.

The main syntactic components of BCPL are: expressions, commands, and
declarations. These are described in the next few sections. In general, the pur-
pose of an expression is to compute a value, while the purpose of a command is
normally to change the value of one or more variables or to perform input/output.

2.1.1 Comments

There are two form of comments. One starts with the symbol // and extends
up to but not including the end-of-line character, and the other starts with the
symbol /* and ends at a matching occurrence of */. Comment brackets (/*
and */ may be nested, and within such a comments the lexical analyser is only
looking for /* and */ and so care is needed when commenting out fragments of
program containing string constants. Comments are equivalent to white space
and so may not occur in the middle of multi-character symbols such as identifiers
or constants.
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2.1.2 The GET Directive

A directives of the form GET "filename" is replaced by the contents of the whole
named file. Earlier versions of the compiler only inserted the file up to the first
occurring dot. By convention, GET directives normally appear on separate lines.
If the filename does not end in .h or .b the extension .h is added. This is looked
up in the current directory and then the directories specified by the environment
variable BCPLHDRS. If these all fail, g/ is prepended to the file name which is
then looked up in the directory specified by the BCPLROOT environment variable.
There is a compiler option hdrs that allows the user to specify an alternative
to BCPLHDRS, such as POSHDRS for the Cintpos system. The default setting for
hdrs is held in the rootnode. For cintsys it is BCPLHDRS and for Cintpos it
is POSHDRS. Both cintsys and cintpos have options to change these default
settings. To check whether these environment variables are set correctly, enter
cintsys or cintpos with the -f option.

2.1.3 Conditional Compilation

There is a simple mechanism, whose implementation takes fewer than 20 lines of
code in the lexical analyser, that allow conditional skipping of lexical symbols.
It uses directives of the following form:

$$tag

$<tag

$>tag

where tag is conditional compilation tag composed of letters, digits, dots and
underlines. All tags are initially unset, but may be complemented using the $$tag
directive. All the lexical tokens between $<tag and $>tag are skipped (treated as
comments) unless the specified tag is set. The following example shows how this
conditional compilation feature can be used.

$$Linux // Set the Linux conditional compilation tag

$<Linux // Include if the Linux tag is set
$<WinNT $$WinNT $>WinNT // Unset the WinNT tag if set
writef("This was compiled for Linux")

$>Linux
$<WinNT // Include if the WinNT tag is set
writef("This was compiled for Windows NT")

$>WinNT

2.1.4 Section Brackets

Historically BCPL used the symbols $( and $) to bracket commands and decla-
rations. These symbols are called section brackets and are allowed to be followed
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by tags composed of letters, digits, dots and underlines. A tagged closing section
bracket is forced to match with its corresponding open section bracket by the au-
tomatic insertion of extra closing brackets as needed. Use of this mechanism is no
longer recommended since it can lead to obscure programming errors. Recently
BCPL has been extended to allow all untagged section brackets to be replaced
by { and } as appropriate.

2.2 Expressions

Expressions are composed of names, constants and expression operators and may
be grouped using parentheses. The precedence and associativity of the different
expression constructs is given in Section 2.2.9. In the Cintcode implementation
of BCPL all expressions yield values that are 32 bits long, but in some native
code implementations the word length is 64 bits.

2.2.1 Names

Syntactically a name is of a sequence of letters, digits, dots and underlines starting
with a letter that is not one of the reserved words (such as IF, WHILE, TABLE).

A name may be declared to a local variable, a static variable, a global variable,
a manifest constant or a function. Since the language is typeless, the value of a
name is a bit pattern whose interpretation depends on how it is used.

2.2.2 Constants

Decimal numbers consist of a sequence of digits, while binary, octal or hexadec-
imal are represented, repectively, by #b, #o or #x followed by digits of the ap-
propriate sort. The case of the letters in hexadecimal numbers is not significant
nor is the case of the letters b, o or x after a #. The o may be omitted in oc-
tal numbers. The Underlines may be inserted within numbers to improve their
readability. The following are examples of valid numbers:

1234
1_234_456
#B_1011_1100_0110
#o377
#X3fff
#x_DEADC0DE

The constants TRUE and FALSE have values -1 and 0, respectively, which are
the conventional BCPL representations of the two truth values. Whenever a
boolean test is made, the value is compared with with FALSE (=0).
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A question mark (?) may be used as a constant with undefined value. It can
be used in statements such as:

LET a, b, count = ?, ?, 0
sendpkt(P_notinuse, rdtask, ?, ?, Read, buf, size)

Character constants consist of a single character enclosed in single quotes (’).
The character returns a value in the range 0 to 255 corresponding to its normal
ASCII encoding.

Character (and string) constants may use the following escape sequences.
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Escape Replacement

*n A newline (end-of-line) character.
*c A carriage return character.
*p A newpage (form-feed) character.
*s A space character.
*b A backspace character.
*t A tab character.
*e An escape character.
*" "

*’ ’

** *

*xhh The single character with number hh (two hexadecimal
digits denoting an integer in the range [0,255]).

*ddd The single character with number ddd (three octal digits
denoting an integer in the range [0,255]).

*#g Set the encoding mode to GB2312 for the rest of this
string or character constant. The default encoding is
UTF8 unless speified by the GB2312 compiler option,
See the specification of the bcpl command on page ??.

*#u Set the encoding mode to UTF8 for the rest of this string
or character constant.

*#hhhh In UTF8 mode, this specifies a single Unicode character
with up to four hexadecimal digits. In string constants,
this is converted to a sequence of bytes giving its UTF-
8 representation. In character constants, it yields the
integer hhhh. Thus ’*#C13F’=#xC13F.

*##h..h In UTF8 mode, this specifies a Unicode character with
up to eight hexadecimal digits, but is otherwise treated
as the *#hhhh escape.

*#dddd In GB2312 mode, this specifies the GB2312 decimal code
(dddd) for an extended character. In string constants,
this is converted to a sequence of bytes giving its GB2312
representation. In character constants, it yields the in-
teger dddd. Thus ’*#g*#4566’=4566.

*f..f* This sequence is ignored, where f..f stands for a se-
quence of one or more space, tab, newline and newpage
characters.

A string constant consists of a sequence of zero or more characters enclosed
within quotes ("). Both string and character constants use the same character
escape mechanism described above. The value of a string is a pointer where the
length and bytes of the string are packed. If s is a string then s%0 is its length
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and s%1 is its first character, see Section 2.2.6. The *# escapes allow Unicode
and GB2312 characters to be handled. For instance, if the following statements
output to a suitable UTF8 configured device:

writef("*#uUnicode 2200 prints as: ’*#2200’*n"}
writef("%# in writef can also be used: ’%#’*n", #x2200)

the result is as follows

Unicode 2200 prints as: ’∀’
%# in writef can also be used: ’∀’

A static vector can be created using an expression of the following form:
TABLE K0, . . . , Kn where K0, . . . , Kn are manifest constant expressions, see Sec-
tion 2.2.10. The space for a static vector is allocated for the lifetime of the
program and its elements are updatable.

2.2.3 Calls

The only difference between functions and routines is whether their calls return
results. Functions are normally called in the context of an expression where
a result is required, while routine are called in the context of a command not
requiring a result. However both functions and routines can be called in either
context. Unwanted results are thrown away, the result of a routine is undefined.

Syntactically, a call is an expression followed by an argument list enclosed in
paretheses.

newline()
mk3(Mult, x, y)
writef("f(%n) = %n*n", i, f(i))
f(1,2,3)
(fntab!i)(p, @a)

The parentheses are required even if no arguments are given. The last exam-
ple above illustrates a call in which the function is specified by an expression.
Section 2.4.8 covers both procedure definition and procedure calls.

2.2.4 Method Calls

Method calls are designed to make an object oriented style of programming more
convenient. They are syntactically similar to a function calls but uses a hash
symbol (#) to separate the function specifier from its arguments. The expression:

E#(E1,..,En)



16 CHAPTER 2. THE BCPL LANGUAGE

is defined to be equivalent to:

(E1!0!E)(E1,..,En)

Here, E1 points to the fields of an object, with the convention that its ze-
roth field (E1!0) is a pointer to the methods vector. Element E of this
vector is applied to the given set of arguments. Normally, E is a mani-
fest constant. An example program illustrating method calls can be found in
BCPL/bcplprogs/demos/objdemo.b in the BCPL distribution system (see Chap-
ter 11).

2.2.5 Prefixed Expression Operators

An expression of the form !E returns the contents of the memory word pointed
to by the value of E.

An expression of the form @E returns a pointer to the word sized memory
location specified by E. E can only be a variable name or an expression with
leading operator !.

Expressions of the form: +E, -E, ABS E, ~E and NOT E return the result
of applying the given prefixed operator to the value of the expression E. The
operator + returns the value unchanged, - returns the integer negation, ABS

returns the absolute value, ~ and NOT return the bitwise complement of the value.
By convention, ~ is used for bit patterns and NOT for truth values.

Expressions of the form: SLCT len:shift:offset pack the three constants len,
shift and offset into a word. Such packed constants are used by the field selection
operator OF described in the next section.

SLCT shift:offset means SLCT 0:shift:offset, and SLCT offset means
SLCT 0:0:offset.

2.2.6 Infixed Expression Operators

An expression of the form E1!E2 evaluates E1 and E2 to yield respectively a
pointer, p say, and an integer, n say. The value returned is the contents of the
nth word relative to p.

An expression of the form E1%E2 evaluates E1 and E2 to yield a pointer, p

say, and an integer, n say. The expression returns a word sized result equal to
the unsigned byte at position n relative to p.

An expression of the form K OF E accesses a field of consecutive bits
in memory. K must be a manifest constant (see section 2.2.10) equal to
SLCT len:shift:offset and E must yield a pointer, p say. The field is contained
entirely in the word at position p+offset. It has a bit length of len and is shift bits
from the right hand end of the word. A length of zero is interpreted as the longest
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length possible consitent with shift and the word length of the implementation.
The operator ⁀:: is a synonym of OF. Both may be used on right and left hand side
of assignments statements but not as the operand of @. When used in a right hand
context the selected field is shifted to the right hand end of the result with vacated
positions, if any, filled with zeros. A shift to the left is performed when a field is
updated. Suppose p!3 holds the value #x12345678, then after the assignment:

(SLCT 12:8:3) OF p := 1 + (SLCT 8:20:3) OF p

the value of p!3 is #x12302478.

An expressions of the form E1<<E2 (or E1>>E2) evaluates E1 and E2 to yield
a bit pattern, w say, and an integer, n say, and returns the result of shifting w

to the left (or right) by n bit positions. Vacated positions are filled with zeroes.
Negative shifts or ones of more than the word length return 0.

Expressions of the form: E1*E2, E1/E2, E1 MOD E2, E1+E2, E1-E2. E1 EQV E2

and E1 XOR E2 return the result of applying the given operator to the two
operands. The operators are, respectively, integer multiplication, integer divi-
sion, remainder after integer division, integer addition, integer subtraction, bit-
wise equivalent and bitwise not equivalent (exclusive OR). REM and NEQV can be
used as synonyms of MOD and XOR, respectively.

Expressions of the form: E1&E2 and E1|E2 return, respectively, the bitwise
AND or OR of their operands unless the expression is being evaluated in a boolean
context such as the condition in a while command, in which case the operands
are tested from from left to right until the value of the condition is known.

An expression of the form: E relop E relop . . . relop E where each relop is one
of =, ~=, <=, >=, < or > returns TRUE if all the individual relations are satisfied and
FALSE, otherwise. The operands are evaluated from left to right, and evaluation
stops as soon as the result can be determined. Operands may be evaluated more
than once, so don’t try ’0’<=rdch()<=’9’.

An expression of the form: E1->E2,E3 first evaluates E1 in a boolean context,
and, if this yields FALSE, it returns the value of E3, otherwise it returns the value
of E2.

2.2.7 Boolean Evaluation

Expressions that control the flow of execution in coditional constructs, such as if
and while commands, are evaluated in a Boolean. This effects the treatment of
the operators NOT, & and |. In a Boolean context, the operands of & and | are
evaluated from left to right until the value of the condition is know, and NOT (or
~) negates the condition.

2.2.8 VALOF Expressions

An expression of the form VALOF C, where C is a command, is evaluated by
executing the command C. On encountering a command of the form RESULTIS E
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within C, execution terminates, returning the value of E as the result of the VALOF
expression. Valof expressions are often used as the bodies of functions.

2.2.9 Expression Precedence

So that the separator semicolon (;) can be omitted at the end of any line, there
is the restriction that infixed operators may not occur as the first token of a line.
So, if the first token on a line is !, + or -, these must be regarded as prefixed
operators.

The syntax of BCPL is specified by the diagrams in Appendix A, but a sum-
many of the precendence of expression operators is given in table 2.1. The prece-
dence values are in the range 0 to 9, with the higher values signifying greater
binding power. The letters L and R denote the associativity of the operators.
For instance, the dyadic operator - is left associative and so a-b-c is equiva-
lent to (v-i)-j, while b1->x,b2->y,z is right associative and so is equivalent to
b1->x,(b2->y,z).

9 Names, Literals, ?, TRUE, FALSE,
(E),

9L Function and method calls
8L ! % OF :: Dyadic
7 ! @ Prefixed
6L * / MOD REM Dyadic operators
5 + - ABS

4 = ~= <= >= < > Extended Relations
4L << >>

3 ~ NOT Bitwise and Boolean operators
3L &

2L |

1L EQV NEQV XOR

1R -> , Conditional expression
0 VALOF TABLE Valof and Table expressions
0 SLCT : Field selector constant

Table 2.1: Operator precedence
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Notice that these precedence values imply that

! f x means ! (f x)

! @ x means ! (@ x)

! v ! i ! j means ! ((v!i)!j)

@ v ! i ! j means @ ((v!i)!j)

x << 1+y >> 1 means (x<<(1+y))>>1)

~ x!y means ~ (x!y)

~ x=y means ~ (x=y)

NOT x=y means NOT (x=y)

b1-> x, b2 -> y,z means b1 -> x, (b2 -> y, z)

2.2.10 Manifest Constant Expressions

Manifest constant expressions can be evaluated at compile time. They may
only consist of manifest constant names, numbers and character constants, TRUE,
FALSE, ?, the operators REM, MOD, SLCT, *, /, +, -, ABS, the relational operators,
<<, >>, NOT, ~, &, |, EQV, NEQV, XOR, and conditional expressions. Manifest expres-
sions are used in MANIFEST, GLOBAL and STATIC declarations, the upper bound
in vector declarations and the step length in FOR commands, and as the left hand
operand of :: and OF.

2.3 Commands

The primary purpose of commands is for updating variables, for input/output
operations, and for controlling the flow of control.

2.3.1 Assignments

A command of the form L:=E updates the location specified by the expression
L with the value of expression E. The following are some examples:

cg_x := 1000
v!i := x+1
!ptr := mk3(op, a, b)
str%k := ch
%strp := ’A’

Syntactically, L must be either a variable name or an expression whose leading
operator is ! or %. If it is a name, it must have been declared as a static
or dynamic variable. If the name denotes a function, it is only updatable if the
function has been declared to reside in the global vector. If L has leading operator
!, then its evaluation (given in Section 2.2.6) leads to a memory location which
is the one that is updated by the assignment. If the % operator is used, the
appropriate 8 bit location is updated by the least significant 8 bits of E.
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A multiple assignment has the following form:

L1,..,Ln := E1,..,En

This construct allows a single command to make several assignments without
needing to be enclosed in section brackets. The assignments are done from left
and is eqivalent to:

L1:=E1 ;. . . ; Ln := En

2.3.2 Calls

Both function calls and method calls as described in sections 2.2.3 and 2.2.4 are
allowed to be executed as commands. The only difference is that any results
produced are thrown away.

2.3.3 Conditional Commands

The syntax of the three conditional commands is as follows:

IF E DO C1

UNLESS E DO C2

TEST E THEN C1 ELSE C2

where E denotes an expression and C1 and C2 denote commands. The symbols
DO and THEN may be omitted whenever they are followed by a command keyword.
To execute a conditional command, the expression E is first evaluated. If it yields
a non zero value and C1 is present then C1 is executed. If it yields zero and C2

is present, C2 is executed.

2.3.4 Repetitive Commands

The syntax of the repetitive commands is as follows:

WHILE E DO C

UNTIL E DO C

C REPEAT

C REPEATWHILE E

C REPEATUNTIL E

FOR N = E1 TO E2 DO C

FOR N = E1 TO E2 BY K DO C
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The symbol DO may be omitted whenever it is followed by a command key-
word. The WHILE command repeatedly executes the command C as long as E

is non-zero. The UNTIL command executes C until E is zero. The REPEAT com-
mand executes C indefinitely. The REPEATWHILE and REPEATUNTIL commands
first execute C then behave like WHILE E DO C or UNTIL E DO C, respectively.

The FOR command first initialises its control variable (N) to the value of
E1, and evaluates the end limit E2. Until N moves beyond the end limit, the
command C is executed and N increment by the step length given by K which
must be a manifest constant expression (see Section 2.2.10). If BY K is omitted
BY 1 is assumed. A FOR command starts a new dynamic scope and the control
variable N is allocated a location within this new scope, as are all other dynamic
variables and vectors within the FOR command.

2.3.5 SWITCHON command

A SWITCHON command has the following form:

SWITCHON E INTO { C1 ;. . . ; Cn }

where the commands C1 to Cn may have labels of the form DEFAULT: or CASE K.
E is evaluated and then a jump is made to the place in the body labelled by
the matching CASE label. If no CASE label with the required value exists, then
control goes to the DEFAULT label if it exists, otherwise execution continues from
just after the switch.

2.3.6 Flow of Control

The following commands affect the flow of control.

RESULTIS E

RETURN

ENDCASE

LOOP

BREAK

GOTO E

FINISH

RESULTIS causes evaluation of the smallest textually enclosing VALOF expres-
sion to return with the value of E.

RETURN causes evaluation of the current routine to terminate.
LOOP causes a jump to the point just after the end of the body of the small-

est textually enclosing repetitive command (see Section 2.3.4). For a REPEAT

command, this will cause the body to be executed again. For a FOR com-
mand, it causes a jump to where the control variable is incremented, and for
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the REPEATWHILE and REPEATUNTIL commands, it causes a jump to the place
where the controlling expression is re-evaluated.

BREAK causes a jump to the point just after the smallest enclosing repetitive
command (see Section 2.3.4).

ENDCASE causes execution of the commands in the smallest enclosing SWITCHON
command to complete.

The GOTO command jumps to the command whose label is the value of E. See
Section 2.4.1 for details on how labels are declared. The destination of a GOTO

must be within the currently executing function or routine.
FINISH only remains in BCPL for historical reasons. It is equivalent to the

call stop(0, 0) which causes the current program to stop execution. See the
description of stop(code, res) page 50.

2.3.7 Compound Commands

It is often useful to be able to execute commands in a sequence, and this can be
done by writing the commands one after another, separated by semicolons and
enclosed in section brackets. The syntax is as follows:

{ C1 ;. . . ; Cm }

where C1 to Cm are commands.
Any semicolon ocurring at the end of a line may be omitted. For this rule to

work, infixed expression operators may never start a line (see Section 2.2.9).

2.3.8 Blocks

A block is similar to a compound command but may start with some declarations.
The syntax is as follows:

{ D1 ;. . . ; Dn; C1 ;. . . ; Cm }

where D1 to Dn are delarations and C1 to Cm are commands. The declarations
are executed in sequence to initialise any variables declared. A name may be used
on the right hand side of its own and succeeding declarations and the commands
(the body) of the block.

2.4 Declarations

Each name used in BCPL program must in the scope of its declaration. The
scope of names declared at the outermost level of a program include the right
hand side of its own declaration and all the remaining declarations in the section.
The scope of names declared at the head of a block include the right hand side of
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its own declaration, the succeeding declarations and the body of the block. Such
declarations are introduced by the keywords MANIFEST, STATIC, GLOBAL and LET.
A name is also declared when it occurs as the control variable of a for loop. The
scope of such a name is the body of the for loop.

2.4.1 Labels

The only other way to declare a name is as a label of the form N:. This may
prefix a command or occur just before the closing section bracket of a compound
command or block. The scope of a label is the body of the block or compound
command in which it was declared.

2.4.2 Manifest Declarations

A MANIFEST declaration has the following form:

MANIFEST { N1=K1 ;...; Nn=Kn }

where N1,..,Nn are names (see Section 2.2.1) and K1,..,Kn are manifest con-
stant expressions (see Section 2.2.10). Each name is declared to have the constant
value specified by the corresponding manifest expression. If a value specification
(=Ki) is omitted, the a value one larger than the previously defined manifest
constant is implied, and if =K1 is omitted, then =0 is assumed. Thus, the decla-
ration:

MANIFEST { A; B; C=10; D; E=C+100 }

declares A, B, C, D and E to have manifest values 0, 1, 10, 11 and 110, respectively.

2.4.3 Global Declarations

The global vector is a permanently allocated region of store that may be directly
accessed by any (separately compiled) section of a program (see Section 2.5. It
provides the main mechanism for linking together separately compiled sections.
A GLOBAL declaration allows a names to be explicitly associated with elements
of the global vector. The syntax is as follows:

GLOBAL { N1:K1 ;...; Nn:Kn }

where N1,..,Nn are names (see Section 2.2.1) and K1,..,Kn are manifest con-
stant expressions (see Section 2.2.10).

Each constant specifies which global vector element is associated with each
variable.

If a global number (:Ki) is omitted, the next global variable element is im-
plied. If :K1 is omitted, then :0 is assumed. Thus, the declaration:
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GLOBAL { a; b:200; c; d:251 }

declares the variables a, b, c and d occupy positions 0, 200, 201 and 251 of the
global vector, respectively.

2.4.4 Static Declarations

A STATIC declaration has the following form:

STATIC { N1=K1 ;...; Nn=Kn }

where N1,..,Nn are names (see Section 2.2.1) and K1,..,Kn are manifest con-
stant expressions (see Section 2.2.10). Each name is declared to be a statically
allocated variable initialised to the corresponding manifest expression. If a value
specification (=Ki) is omitted, the a value one larger than the previously defined
manifest constant is implied, and if =K1 is omitted, then =0 is assumed. Thus,
the declaration:

STATIC { A; B; C=10; D; E=C+100 }

declares A, B, C, D and E to be static variables having initial values 0, 1, 10, 11
and 110, respectively.

2.4.5 LET Declarations

LET declarations are used to declare local variables, vectors, functions and rou-
tines. The textual scope of names declared in a LET declaration is the right hand
side of its own declaration (to allow the definition of recursive procedures), and
subsequent declarations and the commands.

Local variable, vector and procedure declarations can be combined using the
word AND. The only effect of this is to extend the scope of names declared forward
to the word LET, thus allowing the declaration of mutually recursive procedures.
AND serves no useful purpose for local variable and vector declarations.

2.4.6 Local Variable Declarations

A local variable declaration has the following form:

LET N1 ,..., Nn = E1 ,..., En

where N1,..,Nn are names (see Section 2.2.1) and E1,..,En are expressions.
Each name, Ni, is allocated space in the current stack frame and is initialized
with the value of Ei. Such variables are called dynamic variables since they are
allocated when the declaration is executed and cease to exist when control leaves
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their scope. The variables N1,..,Nn are allocated consecutive locations in the
stack and so, for instance, the variable Ni may be accessed by the expression
(@N1)!(i− 1). This feature is a recent addition to the language.

The query expression (?) should be used on the right hand side when a
variable does not need an initial value.

2.4.7 Local Vector Declarations

LET N = VEC K

where N is a name and K is a manifest constant expression. A location is
allocated for N and initialized to a vector whose lower bound is 0 and whose
upper bound is K. The variable N and the vector elements (N!0 to N!K) reside
in the runtime stack and only continue to exist while control remains within the
scope of the declaration.

2.4.8 Procedure Declarations

A procedure declaration has the following form:

LET N ( N1 ,..., Nn ) = E

LET N ( N1 ,..., Nn ) BE C

where N is the name of the function or routine being declared, N1,..,Nn are
its formal parameters. A function is defined using = and returns E as result.
A routine is defined using BE and executes the command C withou returning a
result.

Some example declarations are as follows:

LET wrpn(n) BE { IF n>9 DO wrpn(n/10)

wrch(n REM 10 + ’0’)

}

LET gray(n) = n NEQV n>>1

LET next() = VALOF { c := c-1

RESULTIS !c

}

If a procedure is declared in the scope of a global variable with the same name
then the global variable is given an initial value representing the procedure (see
section 2.5).

A procedure defined using equals (=) it is called a function and yields a result,
while a procedure defines by BE is called a routine and does not. If a function is
invoked as a routine its result in thrown away, and if a routine is invoked as a
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function its result is undefined. Functions and routines are otherwise similar. See
section 2.2.3 for information about the syntax of to function and routine calls.

The arguments of a procedure behave like named elements of a dynamic vector
and so exist only for the lifetime of the procedure call. This vector has as many
elements as there are formal parameters and they receive their initial values
from the actual parameters at the moment of call. Procedures are variadic; that
is, the number of actual parameters need not equal the number of formals. If
there are too few actual parameters then the missing higher numbered ones are
left uninitialized, and if there are too many actual parameters, the extra ones
are evaluated but their values discarded. Notice that the ith argument can be
accessed by the expression (@v)!i, where v is the first argument. The scope of
the formal parameters is the body of the procedure.

Procedure calls are cheap in both space and execution time, with a typical
space overhead of three words of stack per call plus one word for each formal
parameter. In the Cintcode implementation, the execution overhead is typically
just one executed insruction for the call and one for the return.

There are two important restrictions concerning procedures. One is that a
GOTO command cannot make a jump to a label not declared within the current
procedure, although such non local jumps can be made using the library proce-
dures level and longjump, described on page ??. The other is that dynamic
free variables are not permitted.

2.4.9 Dynamic Free Variables

Free variables of a procedure are those that are used but not declared in the
procedure, and they are restricted to be either manifest constants, static variables,
global variables, procedures or labels. This implies that they are not permitted to
be dynamic variables (ie local variables of another procedure). There are several
reasons for this restriction, including the need to be able to represent a procedure
in a single word, the ability to provide a safe separate compilation facility with
the related ability to assign procedures to variables. It also allows the procedure
calling to be efficient. Programmers used to languages such as Algol or Pascal
will find that they need to change their programming style somewhat; however,
most experienced BCPL users agree that the restriction is well worthwhile. One
should note that C adopted the same restriction, although in that language it is
imposed by the simple expedient of insisting that all procedures are declared at
the outermost level, thus making dynamic free variables syntactically impossible.

A style of programming that is often be used to avoid the dynamic free variable
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restriction is exemplified below.

GLOBAL { var:200 }

LET f1(...) BE

{ LET oldvar = var // Save the current value of var

var := ... // Use var during the call of f1

...

f2(...) // var may be used in f2

...

IF ... DO f1(...) // f1 may be called recursively

var := oldvar // restore the original value of var

}

AND f2(...) BE // f2 uses var as a free variable

{ ... var ... }

2.5 Separate Compilation

Large BCPL programs can be split up into sections that can be compiled sepa-
rately. When loaded into memory they can communicate with each other using
a special area of store called the Global Vector. This mechanism is simple and
machine independent and was put into the language since linkage editors at the
time were so primitive and machine dependent.

Variables residing in the global vector are declared by GLOBAL declarations
(see section 2.4.3). Such variables can be shared between separately compiled
sections. This mechanism is similar to the used of BLANK COMMON in Fortran,
however there is an additional simple rule to permit access to procedures declared
in different sections.

If the definition of a function or routine occurs within the scope of a global
declaration for the same name, it provides the initial value for the corresponding
global variable. Initialization of such global variables takes place at load time.

The three files shown in Table 2.1 form a simple example of how separate
compilation can be organised.

File demohdr File demolib.b File demomain.b

GET "libhdr" GET "demohdr" GET "demohdr"

GLOBAL { f:200 } LET f(...) = VALOF LET start() BE

{ ... { ...

} f(...)

}

Table 2.1 - Separate compilation example
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When these sections are loaded, global 200 is initialized to the entry point of
function f defined in demolib.b and so is can be called from the function start

defined in demomain.b.
The header file, libhdr, contains the global declarations of all the resident

library functions and routines making all these accessible to any section that
started with: GET "libhdr". The library is described in the next chapter. Global
variable 1 is called start and is, by convention, the first function to be called
when a program is run.

Automatic global initialisation also occurs if a label declared by colon (:)
occurs in the scope of a global of the same name.

Although the global vector mechanism has disadvantages, particularly in the
organisation of library packages, there are some compensating benefits arising
from its extreme simplicity. One is that the output of the compiler is available
directly for execution without the need for a link editing step. Sections may
also be loaded and unloaded dynamically during the execution of a program
using the library functions loadseg and unloadseq, and so arbitrary overlaying
schemes can be organised easily. An example of where this is used is in the
implementation of the Command Language Interpreter described in Chapter 4.
The global vector also allows for a simple but effective interactive debugging
system without the need for compiler constructed symbol tables. Again, this
was devised when machines were small and disc space was very limited; however,
some of its advantages are still relevant today.



Chapter 3

The Library

This manual describes three variants of the BCPL system. The simplest is in-
voked by the shell command cintsys and provides a single threaded command
language interpreter. The system invoked by cintpos provides a multi-threaded
system where the individual threads (called tasks) are run in parallel and are
pre-emptible. A third version is available for some architectures and provides a
single threaded version in which the BCPL source is compiled into native machine
code. Although this version is faster, it is more machine dependent, has fewer
debugging aids and will only run a single command.

The libraries of these three systems have much in common and so are all
described together. The description of all constants, variables and functions have
a right justified line such as the following

CIN:y, POS:y, NAT:n

where CIN:, POS: and NAT: denote the single threaded, multi-threaded and native code
versions, respectively, and the letters y and n stand for yes and no, showing whether the
corresponding constant, variable or function is available on that version of the system.

The resident library functions, variables and manifest constants are declared in the
standard library header file g/libhdr.h. Most of the functions are defined in BCPL
in either sysb/blib.b or sysb/dlib.b, but three functions (sys, chgco and muldiv)
are in the hand written Cintcode file cin/syscin/syslib. Most functions relating to
the multi-threaded version are defined in klib.b.

The following three sections describe the manifest constants, variables and functions
(in alphabetical order) provided by the standard library.

3.1 Manifest constants

B2Wsh CIN:y, POS:y, NAT:y
This constant holds the shift required to convert a BCPL pointer into a byte address.

Most implementations use pack 4 bytes into 32-bit words requiring B2Wsh=2, but on

29



30 CHAPTER 3. THE LIBRARY

64-bit implementations, such as native code on the DEC Alpha or the 64-bit Cintcode
version of BCPL, its value is 3.

bootregs CIN:n, POS:y, NAT:n
This is the location in Cintcode memory used in Cintpos to hold Cintcode registers

during system startup.

bytesperword CIN:y, POS:y, NAT:y
Its value is 1<<B2Wsh being the number of bytes that can be packed into a BCPL

word. On 32-bit implementations it is 4, and on 64-bit versions it is 8.

bitsperbyte CIN:y, POS:y, NAT:y
This specifies the number of bits per byte. On most systems bitsperbyte is 8.

bitsperword CIN:y, POS:y, NAT:y
It value is bitsperbyte*bytesperword being the number of bits per BCPL word.

It is usually 32, but can be 64.

CloseObj CIN:y, POS:y, NAT:y
This identifies the position of the close method in objects using BCPL’s version

of object oriented programming. Typical use is as follows:

CloseObj#(obj)

For more details, see mkobj described on page 46.

co c, co fn, co list, co parent, co pptr, co size CIN:y, POS:y, NAT:y
These are the system fields as the base of coroutine stacks. If a coroutine is sus-

pended, its pptr field holds the stack frame pointer (P) at the time it became sus-
pended. The parent field points to the parent coroutine, if it has one, or is -1 for root
coroutines, and is zero otherwise. The list field holds the next coroutine in the list of
coroutines originating from global colist. The fn and size fields hold the coroutine’s
main function and stack size, and the c field is a system work location. For more
information about coroutines, see createco described on page 42.

deadcode CIN:y, POS:y, NAT:n
To aid debugging, the entire Cintcode memory is initialised to deadcode. Typically

deadcode=#xDEADC0DE.

endstreamch CIN:y, POS:y, NAT:y
This is the value returned by rdch when reading from a stream that is exhausted.

Its value is normally -1.

entryword CIN:y, POS:y, NAT:n
To aid debugging, every functions entry point is marked by entryword. This is

normally followed by a function name compressed into a string of 11 characters. If the
function name is too long its first and last five character are packed into the string
separated by a single quote ’. Typically entryword=#x0000DFDF.
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globword CIN:y, POS:y, NAT:n
This constant is used to assist the debugging of Cintcode programs. If the ith global

variable is not otherwise set, its value is globword+i. Typically globword=#x8F8F0000.

id inscb, id inoutscb, id outscb CIN:y, POS:y, NAT:n
These constants are mnemonics for the possible values of the id field of a stream

control block. See scb id below.

InitObj CIN:y, POS:y, NAT:y
This identifies the position of the init method in objects using BCPL’s version of

object oriented programming. Typical use is as follows:

InitObj#(obj, arg1, arg2)

For more details, see mkobj described on page 46.

isrregs CIN:n, POS:y, NAT:n
Under Cintpos this is the location in Cintcode memory used to hold the Cintcode

registers representing the state at the start of the interrupt service routine.

klibregs CIN:n, POS:y, NAT:n
Under Cintpos This is the location in Cintcode memory used to hold Cintcode

registers during system startup.

mcaddrinc CIN:y, POS:y, NAT:y
This is the difference between machine addresses of consecutive words in memory

and is usually 4 or 8. Very occasionally, BCPL implementions have negatively growing
stacks, in which case mcaddrinc will be negative.

maxint, minint CIN:y, POS:y, NAT:y
The constant minint is 1<<(bitsperword-1) and maxint is =minint-1. They hold

the most negative and largest positive numbers that can be represented by a BCPL
word. On 32-bit implementations, they are normally #x80000000 and #x7FFFFFFF.

pollingch CIN:n, POS:y, NAT:n
This is the value returned by rdch if a charcter is not immediately available from

the currently selected stream. Its value is normally -3. Currently only TCP streams
under Cintpos provide the polling mechanism.

rootnodeaddr CIN:y, POS:y, NAT:n
This manifest constant is used in Cintsys and Cintpos to hold the address of the

root node. Its value is otherwise zero.

rtn . . . CIN:y, POS:y, NAT:y
The root node is a vector accessible to all running programs to provide access to

all global information. It is available in all versions of BCPL but many of its fields are
only used in Cintpos. The global variable rootnode holds a pointer to the root node.
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On some systems the address of the root node is also held in the manifest constant
rootnodeaddr. Manifest constants starting with rtn give the positions of the fields
within the root node.

rtn abortcode CIN:y, POS:y, NAT:n
This rootnode field holds the most recent return code from a command language

interpreter (CLI). It is used by commands such as dumpsys and dumpdebug when in-
specting Cintcode memory dumps.

rtn adjclock CIN:y, POS:y, NAT:n
This rootnode field holds a correction in minutes to be added to the time of day

supplied by the system. It is normally set to zero.

rtn blklist CIN:y, POS:y, NAT:y
All blocks of memory whether free or in used are chained together in increasing

address order. This rootnode field points to the first in the chain.

rtn blib CIN:y, POS:y, NAT:n
Under Cintsys and Cintpos this rootnode field holds the appropriate versions of the

modules BLIB, SYSLIB and DLIB chained together.

rtn boot CIN:y, POS:y, NAT:n
Under Cintsys and Cintpos this rootnode field holds the appropriate version of the

BOOT module.

rtn boottrace CIN:y, POS:y, NAT:n
Under Cintsys and Cintpos this rootnode field holds 0, 1, 2 or 3 as set by the -v

and -V options to trace the progress of booting the system.

rtn bptaddr, rtn bptinstr CIN:y, POS:y, NAT:n
These each hold vectors of 10 elements used by the standalone debugger to hold

breakpoint addresses and operation codes overwritten by BRK instructions. They are
in the rootnode to make them accessible to the debug task in Cintpos and to the
dumpdebug command.

rtn clkintson CIN:n, POS:y, NAT:n
Under Cintpos, this boolean field controls whether clock interrupts are enabled.

It is provided to make single step execution possible within the interactive debugger
without interference from clock interrupts. For more details see the chapter on the
debugger starting on page 97.

rtn clwkq CIN:n, POS:y, NAT:n
Under Cintpos, this field is used to holds the ordered list of packets waiting to be

released by the clock device.

rtn context CIN:y, POS:y, NAT:n
Under certain circumstances the entire Cintcode memory is dumped in a compacted
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form to the file DUMP.mem for later inspection by commands such as dumpsys and
dumpdebug. This field is set at the time a dump file is written to specify why the dump
was requested. The possible values are as follows:

1: dump caused by second SIGINT
2: dump caused by SIGSEGV
3: fault in BOOT or standalone debug
4: dump by user calling sys(Sys_quit, -2)

5: dump caused by non zero user fault code
6: dump requested from standalone debug

rtn crntask CIN:y, POS:y, NAT:n
Under Cintpos, this rootnode field point to the TCB of the currently running task,

which is the highest priority task that can run.

rtn datestamp0 rtn datestamp1 rtn datestamp2 CIN:y, POS:y, NAT:n
These field hold the date stamp at the time the Cintcode memory was dumped to

DUMP.mem.

rtn dbgvars CIN:y, POS:y, NAT:n
This rootnode field holds vectors of 10 elements used by the standalone debugger

to hold the debugger variables V0 to V9. It is in the rootnode to make it accesibble to
the debug task (in Cintpos) and to the dumpdebug command.

rtn dcount CIN:y, POS:y, NAT:n
This holds a point to the debug count vector.

rtn devtab CIN:y, POS:y, NAT:n
Under Cintpos, this holds the Cintpos device table. The zeroth entry is the table’s

upperbound and each other entries is either zero or points to the device control block
(DCB) of the corresponding device.

rtn dumpflag CIN:y, POS:y, NAT:n
If dumpflag is TRUE when Cintsys or Cintpos exits, the entire Cintcode memory is

dumped in a compacted form to the file DUMP.mem for later inspection by commands
such as dumpsys or dumpdebug.

rtn envlist CIN:y, POS:y, NAT:n
This rootnode field holds the list of logical name-value pairs used by the functions

setlogval and getlogval, and the CLI command setlogval.

rtn hdrsvar CIN:y, POS:y, NAT:n
This field holds the name of the environment variable giving the directories holding

BCPL headers, typically ”BCPLHDRS” or ”POSHDRS”.

rtn idletcb CIN:y, POS:y, NAT:n
This rootnode field holds the TCB of the IDLE task for used by the standalone

debugger and the commands dumpsys and dumpdebug.
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rtn info CIN:y, POS:y, NAT:n
This rootnode field holds a vector of information that can be shared between all

tasks. It is typically a vector of 50 elements. The use of these elements are system
dependent.

rtn insadebug CIN:n, POS:y, NAT:n
This rootnode field is used by the keyboard input device of Cintpos to tell it whether

to place a newly received character in a request packet or just store it in the lastch

field.

rtn intflag CIN:y, POS:y, NAT:n
This flag is set to TRUE on receiving an interrupt from the user (typically a SIGINT

signal generated by ctrl-C) and is reset to FALSE whenever the standalone debugger is
entered. Cintsys or cintpos exits if a user interrupt is received when intflag is TRUE

or if control is within BOOT or sadebug.

rtn keyboard CIN:y, POS:y, NAT:n
This rootnode field holds the stream control block for the standard keyboard device.

rtn klib CIN:y, POS:y, NAT:n
Under Cintpos this rootnode filed holds the the KLIB module. It is otherwise zero.

rtn lastch CIN:n, POS:y, NAT:n
This rootnode field holds the most recent character received from the keyboard

device. The standalone debugger uses it for polling input. On reading this field the
standalone debugger resets it to pollingch=-3.

rtn lastg, rtn lastp, rtn lastst CIN:y, POS:y, NAT:n
These rootnode fields hold the most recent settings of the Cintcode P, G and ST

registers. They are used by the commands dumpsys and dumpdebug when inspecting a
Cintcode memory dump caused by faults such as memory violation (SIGSEGV) when
all other Cintcode dumped registers are invalid.

rtn mc0, rtn mc1, rtn mc2, rtn mc3 CIN:y, POS:y, NAT:n
These hold the machine address of the start of the Cintcode memory and other

values used by the MC package.

rtn membase, rtn memsize CIN:y, POS:y, NAT:n
These rootnode fields hold, respectively, the start of the memory block chain and

the upper bound in words of the Cintcode memory.

rtn pathvar CIN:y, POS:y, NAT:n
This field holds the name of the environment variable giving the directories searched

by loadseg, typically ”BCPLPATH” or ”POSPATH”.

rtn rootvar CIN:y, POS:y, NAT:n
This field holds the name of the environment variable holding the system root

directory, typically ”BCPLROOT” or ”POSROOT”.
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rtn scriptsvar CIN:y, POS:y, NAT:n
This field holds the name of the environment variable giving the directories holding

CLI script files, typically ”BCPLSCRIPTS” or ”POSSCRIPTS”.

rtn screen CIN:y, POS:y, NAT:n
This rootnode field holds the stream control block for the standard screen device.

rtn sys CIN:y, POS:y, NAT:n
Under Cintsys and Cintpos, this holds the entry point to the sys function.

rtn tallyv CIN:y, POS:y, NAT:n
This rootnode field points to a vector used to hold profile execution counts. When

tallying is enabled, the value of tallyv!i is the count of how often the Cintcode
instruction at location i has been executed. The upper bound of tallyv is held in
tallyv!0. For more information about the profile facility see the stats command
described on page 87.

rtn tasktab CIN:y, POS:y, NAT:n
Under Cintpos, this rootnode field holds the Cintpos task table. The zeroth entry

is the table upperbound and the other entries are either zero or points to the task
control block (TCB) of the corresponding task. Note that the IDLE task is not held in
this table since it is not a proper task. The IDLE task TCB is held in the rootnode’s
idletcb field.

rtn tcblist CIN:y, POS:y, NAT:n
Under Cintpos, all TCBs are chained together in decreasing priority order. This

rootnode field points to the first TCB in this chain and so refers to the highest priority
task. The last TCB on the chain has priority zero and represents the idle task.

rtn trbuf, rtn trword CIN:y, POS:y, NAT:y
The rootnode field trbuf points to the trace buffer and trword has value

#xBFBFBFBF. It is used as a lightweight debugging aid. See the command tracebuf on
page 88 for more details.

rtn upb CIN:y, POS:y, NAT:n
This is the upperbound of the rootnode. It value is typically 50.

rtn vecstatsv CIN:y, POS:y, NAT:n
This points to a vector holding counts of how many blocks of each requested size

have been allocated by getvec but not yet returned. It is used by the vecstats

command.

rtn vecstatsvupb CIN:y, POS:y, NAT:n
This field hold the upper bound of vecstatsv.

saveregs CIN:n, POS:y, NAT:n
This is the location in Cintcode memory used in Cintpos to hold the Cintcode

registers at the time of the most recent interrupt.
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scb . . . CIN:y, POS:y, NAT:n
Each currently open stream has a stream control block (SCB) that holds all that

the system needs to know about the stream. Manifest constants beginning scb allow
convenient access to the SCB fields. These are described below.

scb blength CIN:y, POS:y, NAT:n
This SCB field hold the length of the buffer in bytes. It is typically 4096.

scb block CIN:y, POS:y, NAT:n
This SCB field holds the current block number of a disc file. The first block of a

file has number zero.

scb buf CIN:y, POS:y, NAT:n
This SCB field is either zero or points the the buffer of bytes associated with the

stream.

scb bufend CIN:y, POS:y, NAT:n
This SCB field holds the size of the buffer in bytes.

scb encoding CIN:y, POS:y, NAT:n
This SCB field controls how codewrch treats extended characters written to this

stream. If its value is GB2312, the extended character is translated into one or two
bytes in GB2312 format, otherwise the translation is to a sequence of bytes in UTF-8
format. This field is normally set using either codewrch(UTF8) or codewrch(GB2312).

scb end CIN:y, POS:y, NAT:n
This SCB field hold the number of valid bytes in the buffer or -1, if the stream is

exhausted.

scb endfn CIN:y, POS:y, NAT:n
This SCB field is either zero or the function to close down the stream. It is given

the SCB as its argument and returns TRUE if it successfully outputs the contents of the
buffer. It otherwise returns FALSE with an error code in result2.

scb fd CIN:y, POS:y, NAT:n
This SCB field holds a machine dependent file or mailbox descriptor.

scb id CIN:y, POS:y, NAT:n
This SCB field holds one of the values id inscb, id outscb or id inoutscb, indi-

cating whether the stream is for input, output or both.

scb lblock CIN:y, POS:y, NAT:n
This SCB field holds the number of last block. The first block of a stream is

numbered zero.

scb ldata CIN:y, POS:y, NAT:n
This SCB field holds the number of bytes in the last block of a stream.
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scb pos CIN:y, POS:y, NAT:n
This SCB field points to the position within the buffer of the next character to be

transferred.

scb rdfn CIN:y, POS:y, NAT:n
This SCB field is zero if the stream cannot perform input, otherwise it is the

function to refill (or replenish) the buffer with more characters. It is given the SCB as
its argument and returns TRUE if it successfully replenishes the buffer with at least one
character. It otherwise returns FALSE setting result2 to -1 if the end of file has been
encountered, -2 if there was a timeout before any character were read, -3 no character
was available in polling mode. Any other value in result2 is and error code.

scb reclen CIN:y, POS:y, NAT:n
A file is normally regarded as a potentially huge sequence of bytes, but can also be

treated as a sequence of fixed length records. The reclen SCB field hold the length in
bytes of such records. The first record of a file has number zero. Unless the length of a
file is a multiple of the record length, the length of last record of a file will be shorter
than the specified record length.

scb size CIN:y, POS:y, NAT:n
This constant is equal to the number of words in a stream control block.

scb timeout CIN:y, POS:y, NAT:n
This SCB field holds the stream timeout value for TCP streams. If it is zero no

timeout is applied. If it is negative, data is only tranferred if it is immediately available.
If it is strictly positive it represents a timeout value in milli-seconds.

scb timeoutact CIN:y, POS:y, NAT:n
This SCB field controls the effect of a time out on this stream while reading using

rdch. A value of 0 causes the time out to be ignored, a value of -1 caused the rdch to
return with the value endstreamch, and a value of -2 causes rdch to return with the
value timeoutch.

scb type CIN:y, POS:y, NAT:n
This SCB field holds the type of the stream which will be one of the following:

scbt net, scbt file, scbt ram, scbt console or scbt mbx, scbt tcp. The last three
have strictly positive values causing output to be triggered by end-of-line characters,
while the first three are negative and only trigger output when the IO buffer is full.
TCP streams have type net or tcp, streams to and from disk file have type file, stream
to or from a vector in main memory have type ram, mbx specifies mailbox streams, and
console indicates that the stream is either to standard output or from standard input
which are normally the screen and keyboard, respectively.

scb task CIN:y, POS:y, NAT:n
Under Cintpos, this SCB field holds either zero or the number of the handler task

associated with the stream, if it has one.
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scb upb CIN:y, POS:y, NAT:n
This constant is the upperbound of a stream control block. its value is scb size-1.

scb wrfn CIN:y, POS:y, NAT:n
This SCB field is zero if the stream cannot perform output, otherwise it is the

function to output (or deplete) the buffer. It is given the SCB as its argument and
returns TRUE if it successfully outputs the contents of the buffer. It otherwise returns
FALSE with an error code in result2.

scb write CIN:y, POS:y, NAT:n
This SCB field is TRUE if the buffer has been updated by functions such as wrch

since it was last written out (depleted).

scbt net, scbt file, scbt ram, scbt console, scbt mbx, scbt tcp
CIN:y, POS:y, NAT:n

These constants are mnemonics for the possible values of the type field of a stream
control block. See scb type above.

sectword CIN:y, POS:y, NAT:n
The first word of every loaded section is sectword. This are normally followed by

a section name. Typically sectword=#x0000FDDF.

stackword CIN:y, POS:y, NAT:n
All words in runtime stacks are initialised to stackword. Typically

stackword=#xABCD1234.

Sys . . . CIN:y, POS:y, NAT:y
Manifest constants of the form Sys ... provide mnemonics for the operations

invoked by the sys function. The use of these manifest constants is described in pages
following Section 3.3 starting on page 51.

t bhunk, t bhunk64, t end, t end64, t hunk, t hunk64, t reloc, t reloc64
CIN:y, POS:y, NAT:n

These are constants identifying components of Cintcode object modules. Cintcode
modules hold the relocatable byte stream interpretive code used by all BCPL interpre-
tive systems. Constants with names ending with 64 are used in the 64-bit version of
Cintcode. For more details, see the description of loadseg on page 54.

tickspersecond CIN:n, POS:y, NAT:n
Under Cintpos, the clock device ticks at a rate of tickspersecond ticks per second.

Real time delays are specified in ticks, so, for example, a delay of 5 seconds can be
achieved by the call: sendpkt(notinuse, -1, 0, 0, 0, 5*tickspersecond). The
second argument (-1) specifies the clock device, and the arg1 field (5*tickspersecond)
specifies the real time delay in ticks. The value of tickspersecond is typically 50.

timeoutch CIN:n, POS:y, NAT:n
This is the value returned by rdch when a timeout occurs while trying to read from
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a stream. Its value is normally -2. Currently only TCP streams under Cintpos provide
the timeout mechanism.

ug CIN:y, POS:y, NAT:y
This constant specified the first Global variable available to user programs. Cur-

rently ug=200 so globals below this value are reserved for system use and the standard
library. Since ug may change it would be wise to use it.

3.2 Global variables

This section describes the global variables declared in libhdr.h.

clihook CIN:y, POS:y, NAT:y
This function is used by command language interpreters to call the main function

(start) of a newly loaded program. Its main purpose is to allow the user to set a
breakpoint at the start of the next CLI command before start has been loaded into
memory, see page 41.

cis, cos CIN:y, POS:y, NAT:y
These are, respectively, the currently selected input and output streams. Zero

indicates that no stream is selected.

globsize CIN:y, POS:y, NAT:y
This variable is global zero and holds the size of the global vector.

result2 CIN:y, POS:y, NAT:y
This global variable is used by some functions to return a second result.

start CIN:y, POS:y, NAT:y
This is global 1 and is, by convention, the main function of a program. It is the

first user function to be called when a program is run by the Command Language
Interpreter.

userenv CIN:y, POS:y, NAT:y
This variable is available to the user to hold information that is preserved from

one CLI command to the next. The standard command language interpreter resets all
global variable from ug to the end of the global vector between commands. userenv is
not in this region of the global vector and so is preserved. Normally userenv is either
zero or points to a user defined structure holding environmental data.

currco CIN:n, POS:y, NAT:n
This points to the currently executing coroutine.

rootnode CIN:n, POS:y, NAT:n
This points to the rootnode.
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colist CIN:n, POS:y, NAT:n
This holds the list of currently existing coroutines.

returncode CIN:n, POS:y, NAT:n
This holds the return code of the command most recently executed by the current

command language interpreter.

currentdir CIN:n, POS:y, NAT:n
This holds the name of the current working directory.

randseed CIN:n, POS:y, NAT:n
This is the seed used by the random number generator randno.

tcb CIN:n, POS:y, NAT:n
Under Cintpos this is a pointer to the currently executing task.

taskid CIN:n, POS:y, NAT:n
Under Cintpos this is the identifier of the currently executing task.

pktlist CIN:n, POS:y, NAT:n
Under Cintpos when running in multi-event mode, pktlist contains mapping in-

formation from packet to its corresponding coroutine.

consoletask CIN:n, POS:y, NAT:n
This is a variable used by command language interpreters.

multi count CIN:n, POS:y, NAT:n
This is a variable used in the implementation of gomultievent under Cintpos.

mainco busy CIN:n, POS:y, NAT:n
This is a variable used in the implementation of gomultievent under Cintpos.

3.3 Global functions

One of the main purposes of the global vector is hold entry points of functions defined
in one module and used in a different module. This section describes the function
defined in the standard resident library. Most of these are defined in BCPL in the files:
sysb/klib.b, sysb/blib.b and sysb/dlib.b, one library (cin/syscin/syslib) is in
hand written Cintcode since it contains instructions that cannot be generated by the
BCPL compiler. The functions defined in syslib are sys, changeco and muldiv.

The standard library functions are described in alphabetical order.

abort(code) CIN:y, POS:y, NAT:n
This procedure causes an exit from the current invocation of the interpreter, re-

turning code as the error code. If code is zero execution exits from the Cintcode system.
If code is -1 execution resumes using the faster version of the interpreter (fasterp). If



3.3. GLOBAL FUNCTIONS 41

code is -2 the entire Cintcode memory is written to file DUMP.mem is a compacted form
for processing by CLI commands such as dumpsys or dumpdebug. If code is positive,
under normal conditions, the interactive debugger is entered.

res := callco(cptr, arg) CIN:y, POS:y, NAT:y
This call suspends the current coroutine and transfers control to the corou-

tine pointed to by cptr. It does this by resuming execution of the function that
caused its suspension, which then immediately returns yielding arg as result. When
callco(cptr,arg) next receives control it yields the result it is given.

res := callseg(name, a1, a2, a3, a4) CIN:y, POS:y, NAT:y
This function loads the compiled program from the file name, initialises its global

variables and calls start with the four arguments a1,...,a4. It returns the result of
this call, after unloading the program.

ch := capitalch(ch) CIN:y, POS:y, NAT:y
This function converts lowercase letters to uppercase, leaving other characters un-

changed.

res := clihook() CIN:y, POS:y, NAT:y
This function simply calls start and returns its result. Its purpose is to assist

debugging by providing a place to set a breakpoint in the command language interpreter
(CLI) just before a command in entered. Occassionally, a user may find it useful to
override the standard definition of clihook with a private version.

codewrch(code) CIN:y, POS:y, NAT:y
This routine uses wrch to write the Unicode character code as a sequence of bytes

in either UTF8 or GB2312 format. If the encoding field of the current output stream
is UTF8, the output is in UTF8 format as described in the following table.

Code range Binay value UTF8 bytes

0-7F zzzzzzz 0zzzzzzz

80-7FF yyyyyzzzzzz 110yyyyy 10zzzzzz

800-FFFF xxxxyyyyyyzzzzzz 1110xxxx 10yyyyyy 10zzzzzz

1000-1FFFFF wwwxxxxxxyyyyyyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

etc etc etc

If the encoding field of the current output stream is GB2312, the output is in GB2312
format as described in the following table.

Decimal range GB2312 bytes

0 < dd < 127 <dd>

128 < xxyy < 9494 <xx+160> <yy+160>
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res := compch(ch1, ch2) CIN:y, POS:y, NAT:y
This function compares two characters ignoring case. It yields -1 (+1) if ch1 is

earlier (later) in the collating sequence than ch2, and 0 if they are equal.

res := compstring(s1, s2) CIN:y, POS:y, NAT:y
This function compares two strings ignoring case. It yields -1 (+1) if s1 is earlier

(later) in the collating sequence than s2, and 0 if the strings are equal.

res := cowait(arg) CIN:y, POS:y, NAT:y
This call suspends the current coroutine and returns control to its parent by resum-

ing execution of the function that caused its suspension, yielding arg as result. When
cowait(arg) next receives control it yields the result it is given.

cptr := createco(fn, size) CIN:y, POS:y, NAT:y
BCPL uses a stack to hold function arguments, local variables and anonymous

results, and it uses the global vector and static variables to hold non-local quanitities.
It is sometimes convenient to have separate runtime stacks so that different parts of
the program can run in pseudo parallelism. The coroutine mechanism provides this
facility.

Coroutines have distinct stacks but share the same global vector, and it is natural
to represent them by pointers to their stacks. At the base of each stack there are six
words of system information as shown in figure 3.1.

sz c P1 L1fn

suspended

stack frame

resumption point

coroutine chain

parent link
cptr

Figure 3.1: A coroutine stack

The resumption point is P pointer belonging to the procedure that caused the
suspension of the coroutine. It becomes the value of the P pointer when the coroutine
next resumes execution. The parent link points to the coroutine that called this one,
or is zero if the coroutine not active. The outermost coroutine (or root coroutine) is
marked by the special value -1 in its parent link. As a debugging aid, all coroutines
are chained together in a list held in the global colist. The values fn and sz hold the
main function of the coroutine and its stack size, and c is a private variable used by
the coroutine mechanism.

At any time just one coroutine (the current coroutine) has control, and all the
others are said to be suspended. The current coroutine is held in the global variable
currco, and the Cintcode P register points to a stack frame within its stack. Passing
control from one coroutine to another involves saving the resumption point in the
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changeco

PC

CHGCOP

aL1P1

P1 L1 a

currco PPC

stack frame
currco

resumption point

resumption point

cptr

Figure 3.2: The effect of changeco(a, cptr)

current coroutine, and setting new values for the program counter (PC), the P pointer
and currco. This is done by changeco(a,cptr) as shown in figure 3.2. The function
changeco is defined by hand in syslib and its body consists of the single Cintcode
instruction CHGCO and as can be seen its effect is somewhat subtle. The only uses of
changeco are in the definitions of createco, callco, cowait and resumeco, and these
are the only functions that cause coroutine suspension.

The function createco creates a new coroutine with a given main function fn and
stack size size leaving it suspended in the call of cowait in the following loop.

c := fn(cowait(c)) REPEAT

When control is next transfered to this new coroutine, the value passed becomes
the result of cowait and hence the argument of fn. If fn(..) returns normally, its
result is assigned to c which is returned to the parent coroutine by the repeated call
of cowait. Thus, if fn is simple, a call of the coroutine convert the value passed, val
say, into fn(val). However, in general, fn may contain calls of callco, cowait or
resumeco, and so the situation is not always quite so simple.

In detail, the implementation of createco uses getvec to allocate a vector
with upper bound size+6 and initialises its first six locations ready for the call of
changeco(0,c) that follows. The state just after this call is shown in figure 3.3. No-
tice that cowait(c) is about to be executed in the environment of the new coroutine,
and that this call will cause a return from createco in the original coroutine, passing
back a pointer to the new coroutine as a result.

deleteco(cptr) CIN:y, POS:y, NAT:y
This call takes a coroutine pointer as argument and, after checking that the corre-

sponding coroutine has no parent, deletes it by returning its stack to free store.

flag := deletefile(name) CIN:y, POS:y, NAT:y
This call deletes the named file, returning if successful, and FALSE otherwise.
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P2 L2 fn sz c P1 L1 0 c

K9G 24     cowait(c)
LP3

J -7     } REPEAT

K6         fn( ... )

LP5      {PC

P
The new coroutine

coroutine chain

fn sz c

stack frame

createco

stack frame

changeco

colist

currco

SP5        c := ...

Figure 3.3: The state just after changeco(0,c) in createco

endread() CIN:y, POS:y, NAT:y
This routine closes the currently selected input stream by calling endstream(cis).

endstream(scb) CIN:y, POS:y, NAT:y
This routine closes the stream whose control block is scb.

endwrite() CIN:y, POS:y, NAT:y
This routine closes the currently selected output stream by calling endstream(cos).

n := findarg(keys, item) CIN:y, POS:y, NAT:y
The function findarg was primarily designed for use by rdargs but since it is

sometimes useful on its own, it is publicly available. Its first argument, keys, is a string
of keys of the form used by rdargs and item is a string. If the result is positive, it is
the argument number of the keyword that matches item, otherwise the result is -1.

scb := findinput(name) CIN:y, POS:y, NAT:y
This function opens an input stream. If name is the string "*" then it opens the

standard input stream which is normally from the keyboard, otherwise name is taken
to be a device or file name. If the stream cannot be opened the result is zero. See
Section 3.3.2 for information about the treatment of filenames.

scb := findoutput(name) CIN:y, POS:y, NAT:y
This function opens an output stream specified by the device or file name name.

If name is the string "*" then it opens the standard output stream which is normally



3.3. GLOBAL FUNCTIONS 45

to the screen. If the stream cannot be opened, the result is zero. See Section 3.3.2 for
information about the treatment of filenames.

v := getvec(upb) CIN:y, POS:y, NAT:y
This function allocates of space using a first fit algorithm based on a list of blocks

chained together in memory order. Word zero of each block in the chain contains a flag
in its least significant bit indicating whether the block is allocated or free. The rest of
the word is an even number giving the size of the block in words. A pointer to the first
block in the chain is held in the rootnode.

getvec allocates a vector with upper bound upb from the first large enough free
block on the block list. If no such block exists it returns zero. A vector previously
allocated by getvec can be freed by the above call of freevec. Coalescing of adjacent
free blocks is performed by getvec.

An extra word is allocated just before the start of each block to hold its size, and
four or five words are added to the end of each block and filled with special data that
is checked when the block is returned to free store. This catches many common space
allocation errors.

res := globin(segl) CIN:y, POS:y, NAT:y
This function initialises the global variables defined in the list of program modules

given by its argument segl. It returns zero if the global vector was too small, otherwise
it returns segl.

cptr := initco(fn, size, a,...) CIN:y, POS:y, NAT:y
This function provides a convenient method of creating and intialising coroutines.

It definition is as follows:

LET initco(fn, size, a, b, c, d, e, f, g, h, i, j, k) = VALOF
{ LET cptr = createco(fn, size)
TEST cptr
THEN result2 := callco(cptr, @a)
ELSE result2 := 0
RESULTIS cptr

}

A coroutine with main function fn and given size is created and, if successful, it
is initialised by callco(cptr, @a). Thus, fn should expect a vector containing up to
11 values. Once the newly created coroutine has initialised itself, it returns control to
initco by means a call of cowait. The result of initco is the newly created coroutine
pointer, or zero on failure. The second result (in result2) is the value returned by the
first call of cowait in the newly created coroutine.

scb := input() CIN:y, POS:y, NAT:y
This function returns cis, the SCB of the currently selected input stream.

count := instrcount(fn,a,b,c,d,e,f,g,h,i,j,k) CIN:y, POS:y, NAT:n
This procedure returns the number of Cintcode instruction executed when evalu-

ating the call: fn(a,b,c,d,e,f,g,h,i,j,k).
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Counting starts from the first instruction of the body of fn and ends when its
final RTN instruction is executed. Thus when f was defined by LET f(x) = 2*x+1,
the call instrcount(f, 10) returns 4 since its body executes the four instructions:
L2; MUL; A1; RTN. The value returned by fn(a,b,c,d,e,f,g,h,i,j,k) is saved by
instrcount in the global variable result2.

flag := intflag() CIN:y, POS:y, NAT:n
This function provides a machine dependent test to determine whether the user is

asking to interrupt the normal execution of a program. On the Apple Macintosh flag
will be set to TRUE only if the COMMAND, OPTION and SHIFT keys are simultane-
ously pressed.

P := level() CIN:y, POS:y, NAT:y
This call returns the current stack frame pointer(P ) for use in a later call of

longjump.

segl := loadseg(name) CIN:y, POS:y, NAT:n
This function calls sys(Sys loadseg, name) to loads the specified compiled pro-

gram into memory. See Sys loadseg on page 54 for details.

The remaining 4 words contain global initialisation data indicating that
global 1(00000001) is to be set to the entry point at position 36 (00000024) relative to
the start of the hunk, and that the highest referenced global number is 28 (0000001C).

longjump(P, L) CIN:y, POS:y, NAT:y
This call causes execution to resume at label L in the body of a procedure that

owns the stack frame given by P that must have been obtained by a previous call of
level. Jumps may only be used to points within the current coroutine. Jumps to
labels within the current procedure can be performed using the GOTO command, so
level and longjump are only needed for non local jumps.

obj := mkobj(upb, fns, a, b, c, d, e, f, g, h, i, j, k)
CIN:y, POS:y, NAT:y

This function creates and initialises an object. It definition is as follows:

LET mkobj(upb, fns, a, b, c, d, e, f, g, h, i, j, k) = VALOF
{ LET obj = getvec(upb)

IF obj DO
{ !obj := fns

InitObj#(obj, @a) // Send the init message to the object
}
RESULTIS obj

}

As can be seen, it allocates a vector for the fields of the object, initialises its
zeroth element to point to the methods vector and calls the initialisation method that
is expected to be in element InitObj of fns. The result is a pointer to the initialised
fields vector. If it fails, it returns zero. As can be seen the initialisation method receives
a vector of up to 11 initialisation arguments.
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res := muldiv(a, b, c) CIN:y, POS:y, NAT:y
The result is the value obtained by dividing c into the double length product of a

and b, the remainder of this division is left in the global variable result2. The result
is undefined if it is too large to fit into a single length word or if c is zero. In this
implementation, the result is also undefined if any of a, b or c is the largest negative
integer. As an example, the function defined below calculates the cosine of the angle
between two unit vectors in three dimensions using scaled integers to represent numbers
with 6 digits after the decimal point.

MANIFEST { Unit=1000000 } // Scaling factor for numbers of the
// form ddd.dddddd

FUN inprod(v, w) = muldiv(v!0, w!0, Unit) +
muldiv(v!1, w!1, Unit) +
muldiv(v!2, w!2, Unit)

On some processors, such as the Pentium, muldiv can be encoded very efficiently
in assembly language.

Remember that scaled fixed point values can be output conveniently using writef

as in:

writef("%10.6d*n", 123_456789)

which will output the following:

123.456789

newline() CIN:y, POS:y, NAT:y
This simply outputs the newline character (’*n’) to the currently selected output

stream.

newpage() CIN:y, POS:y, NAT:y
This simply outputs the newline character (’*p’) to the currently selected output

stream.

scb := output() CIN:y, POS:y, NAT:y
This function returns cos, the SCB of the currently selected output stream.

scb := pathfindinput(name, pathname) CIN:y, POS:y, NAT:y
This function opens an input stream. If name is the string "*" then input comes

from standard input which is normally the keyboard, otherwise name is taken to be
a filename. If name is a relative file name and pathname is non zero, the directories
specified by the shell variable pathname are searched. If pathname is zero the filename
is looked up in the current directory. If the file cannot be opened pathfindinput

returns zero.

n := randno(upb) CIN:y, POS:y, NAT:y
This function returns a random integer in the range 1 to upb. It uses a seed held
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in global variable randseed which can be set using setseed described below. Its
implementation is as follows:

LET randno(upb) = VALOF
{ randseed := randseed*2147001325 + 715136305

RETURN ABS(randseed/3) REM upb + 1
}

res := rdargs(keys, argv, upb) CIN:y, POS:y, NAT:y
This implementation of BCPL incorporates a command language interpreter which

is described in Chapter 4. Most commands require argument and these are easily read
using this function.

The first argument (keys) is a string specifying a list of argument keywords with
possible qualifiers. The second and third arguments provide a vector (argv) with a given
upper bound (upb) into which the decoded arguments are to be placed. If rdargs

is successful, it returns the number of words used in argv to represent the decoded
command arguments, but on failure, it returns zero.

Command arguments are read from the currently selected input stream using a
decoding mechanism that permits both positional and keyed arguments to be freely
mixed. A typical use of rdargs occurs in the source of the input command as follows:

UNLESS rdargs("FROM/A,TO/K,N/S", argv, 50) DO
{ writef "Bad arguments for INPUT\n"

...
}

In this example, there are three possible arguments and their values will be placed
in the first three elements of argv. The first argument has keyword FROM and must
receive a value because of the qualifier /A. The second has keyword TO and its qualifier
/K insists that, if the argument is given, it must be introduced by its keyword. The
third argument has the qualifier /S indicating that it is a switch that can be turned on
by the presence of its keyword. If an argument is supplied, the corresponding element
of argv will be set to -1, if it is a switch argument, otherwise it will be set to a string
containing the characters of the argument value. The elements of argv corresponding
to unset arguments are cleared. Table 3.4 shows the values in placed in argv and the
result when the call:

rdargs("FROM/A,TO=AS/K,N/S", argv, 50)

is given various argument strings. This example illustrates that keyword synonyms can
be defined using = within the key string. Positional arguments are those not introduced
by keywords. When one is encountered, it becomes the value of the lowest numbered
unset non-switch argument.

ch := rdch() CIN:y, POS:y, NAT:y
This call reads the next character from the currently selected input stream. If the

stream is exhausted, it returns the special value endstreamch. Input from the keyboard
is buffered until the ENTER (or RETURN) key is pressed to allow simple line editing
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Arguments argv!0 argv!1 argv!2 Result

abc TO xyz "abc" "xyz" 0 >0

to xyz from abc "abc" "xyz" 0 >0

as xyz abc n "abc" "xyz" -1 >0

abc xyz - - - =0

"from" to "to" "from" "to" 0 >0

Figure 3.4: rdargs("FROM/A,TO=AS/K,N/S", argv, 50)

in which the backspace key may be used to delete the most recent character typed. See
Section 3.3.1 for more detailed information.

kind := rditem(v, upb) CIN:y, POS:y, NAT:y
This function is usually called from rdargs to read an item from the currently

selected input stream. After ignoring leading spaces and tabs, it packs the item into
the vector v whose upper bound is upb and returns an integer describing the kind of
item read. Table 3.5 gives the kinds of item that can be read and corresponding item
codes.

Example items Kind of item Item code

; 4
carriage return 3
"from"

"\ntwo words\n" Quoted string 2
abc

123-45*6 Unquoted string 1
end-of-stream Terminator 0

An error -1

Figure 3.5: rditem results

Within quoted strings *n represents the newline character, *s represents a space,
** represents an asterisk and *" represents a a double quote character.
flag := renamefile(oldname, newname) CIN:y, POS:y, NAT:y

The call renames the file oldname as file newname, deleting newname if necessary,
returning TRUE if the renaming was successful, and FALSE otherwise. Both oldname
and newname are strings.

n := readn() CIN:y, POS:y, NAT:y
This reads an optionally signed decimal integer from the currently selected input

stream. Leading spaces, tabs and newlines are ignored. If the number is syntactically



50 CHAPTER 3. THE LIBRARY

correct, it returns its value with result2 set to zero, otherwise it returns zero with
result2 set to -1. In either case, it uses unrdch to replace the terminating character.

res := resumeco(cptr, arg) CIN:y, POS:y, NAT:y
The effect of resumeco is almost identical to that of callco, differing only in the

treatment of the parent. With resumeco the parent of the calling coroutine becomes
the parent of the called coroutine, leaving the calling coroutine suspended and without
a parent. Systematic use of resumeco reduces the number of coroutines having parents
and hence allows greater freedom in organising the flow of control between coroutines.

ch := sardch() CIN:y, POS:y, NAT:y
This function calls sys(Sys sardch) to read the next character from the keyboard

as soon as it is available, echoing the character to the screen.

sawrch(ch) CIN:y, POS:y, NAT:y
This function calls sys(Sys sawrch(ch) to write the specified character to the

screen.

sawritef(format, a, b, ...) CIN:y, POS:y, NAT:y
This function is similar to writef but performs its output using sawrch.

selectinput(scb) CIN:y, POS:y, NAT:y
This call executes cis := scb to select scb as the current input stream. It aborts

(with code 186) if scb is not an input stream.

selectoutput(scb) CIN:y, POS:y, NAT:y
This routine selects scb as the currently selected output stream. It aborts (with

code 187) if scb is not an output stream.

oldseed := setseed(newseed) CIN:y, POS:y, NAT:y
The current seed can be set to newseed by the call setseed(newseed). This function

returns the previous seed value.

code := start(a1, a2, a3, a4) CIN:y, POS:y, NAT:y
This function is, by convention, the main procedure of a program. If it is called

from the command language interpreter (see section 4), its first argument is zero and
its result should be the command completion code; however, if it is the main procedure
of a module run by callseg, defined below, then it can take up to 4 arguments and its
result is up to the user. By convention, a command completion code of zero indicates
successful completion and larger numbers indicate errors of ever greater severity

stop(code) CIN:y, POS:y, NAT:y
This function is provided to stop the execution of the current command running

under control of the CLI. Its argument, code, is the command’s completion code and is
assigned to returncode.
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n := str2numb(str) CIN:y, POS:y, NAT:y
This function converts the string str into an integer. Characters other than 0 to 9

and - are ignored.

res := sys(op,...) CIN:y, POS:y, NAT:y
The file sysc/cintsys.c contains the main program of the Cintsys system. It

also includes the definition of an important function dosys which provide access to
I/O operations and many other operating system primitives. The file sysc/cinterp.c
contains a C implementation of the Cintcode interpreter. With different compile time
settings this file can generate a faster version by reducing the number of debugging aids
present. Sometimes there is an even faster version of the interpreter implemented in
assembly language, see, for instance, sysasm/linux/cintasm.s. The BCPL function
sys provides an interface between BCPL and dosys.

The file sysc/cintpos.c contains the main program of the Cintpos system. It has
much is common with sysc/cintsys.c including the function dosys.

The sys function is defined by hand in cin/syscin/syslib and just invokes the
SYS Cintcode instruction. When SYS is encountered by the interpreter, it normally
just calls dosys passing the BCPL P and G pointers as arguments. But certain sys

operations such as sys(Sys quit,code) are processed directly by the interpreter.
As might be expected there are many sys operations concerned with interrupts

that are only available under Cintpos.

res := sys(Sys buttons) CIN:y, POS:y, NAT:y

res := sys(Sys callc, fno, a1, a2 ...) CIN:y, POS:y, NAT:y
This calls cfuncs(args, g) where cfuncs is a C function defined in

sysc/cfuncs.c. The argument args points to memory locations holding fno, a1,
a2, etc., and g points to the base of the global vector.

The following table summarises the callc operations currently available (when run-
ning under Linux).
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Function number Purpose

c name2ipaddr a1 = name or dotted decimals of a host
res is the IP address of the host

or -1 if error.

c name2port a1 = name or decimals of a port
res is the port number

or -1 if error.

c newsocket res is the port number
or -1 if error.

c reuseaddr a1 = the file descriptor of a socket
a2 = 1 means that the socket can be reused
res = -1 if error

c setsndbufsz a1 = the file descriptor of a socket
a2 = size to set the send buffer for this socket
res = -1 if error

c setrcvbufsz a1 = the file descriptor of a socket
a2 = size to set the recv buffer for this socket
res = -1 if error

c bind a1 = the file descriptor of a socket
a2 = the remote IP address for this socket
a3 = the remote port number for this socket
res = -1 if error

c tcpconnect a1 = the file descriptor of a socket
a2 = the remote IP address for this socket
a3 = the remote port number for this socket
res = -1 if error

c tcplisten a1 = the file descriptor of a socket
a2 = the maximum number of connections waiting to be accepted
res = -1 if error

c tcpaccept a1 = the file descriptor of a socket
res = the file descriptor of the socket to use for the accepted connection
or -1 if error

c tcpclose a1 = the file descriptor of the socket to be closed
res = -1 if error

c fd zero a1 = pointer to a vector bits
res = -1 if error

c fd set a1 = the number of the bit to set
a2 = pointer to a vector bits
res = -1 if error

c fd isset a1 = the number of the bit to test
a2 = pointer to a vector bits
res = 1 if the bit was set, 0 otherwise

c fd select a1 = the number of the bit to test
a2 = pointer to a vector bits identifying read sockets of interest
a3 = pointer to a vector bits identifying write sockets of interest
a4 = pointer to a vector bits identifying sockets of interest
a5 = pointer to two words holding the timeout in seconds and microseconds
res = the number of sockets that can now be read or written to, or 0 if the timeout perio
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res := sys(Sys callnative, f, a1, a2, a3) CIN:y, POS:y, NAT:y
This function is used to enter a subroutine in native machine code.

res := sys(Sys close, fp) CIN:y, POS:y, NAT:y
This closes the file whose file pointer is fp. It return 0 if successful.

res := sys(Sys cputime) CIN:y, POS:y, NAT:y
This returns the CPU time in milliseconds since the Cintcode system was entered.

res := sys(Sys delay, ticks) CIN:y, POS:y, NAT:y
Under Cintpos, this call returns after the spcified delay given by ticks. The manifest

constant tickspersecond specifies how many ticks there are in one second.

res := sys(Sys deletefile, name) CIN:y, POS:y, NAT:y
This deletes the file whose name is given by name. See page 65 for information

about the treatment of file names.

res := sys(Sys devcom, com, arg) CIN:y, POS:y, NAT:y

res := sys(Sys dumpmem, context) CIN:y, POS:y, NAT:y

sys(Sys freevec, ptr) CIN:y, POS:y, NAT:y
If ptr is zero it does nothing, otherwise it returns the space pointed to by ptr that

must have previously been allocated by sys(Sys getvec,...). It checks that the block
is not already free and that it has not been corrupted.

res := sys(Sys filemodtime, name) CIN:y, POS:y, NAT:y
This returns time of last modification of the file given by name.

res := sys(Sys filesize, fd) CIN:y, POS:y, NAT:y
This call return the size in bytes of the currently opened disk file whose file descrip-

tor is fd. The file descriptor is typically obtained by the expression scb!scb fd.

res := sys(Sys ftime) CIN:y, POS:y, NAT:y

res := sys(Sys getpid) CIN:y, POS:y, NAT:y
This function returns the process id of the currently executing process.

str := sys(Sys getprefix) CIN:y, POS:y, NAT:y
This returns the current prefix string. See sys(Sys setprefix,...) on page 58.

res := sys(Sys getsysval, addr) CIN:y, POS:y, NAT:y
This function return the contents of the machine memory location whose address

is addr.
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res := sys(Sys getvec, upb) CIN:y, POS:y, NAT:y
This allocates a vector whose lower bound is 0 and whose upper bound is upb. It

return zero if the request cannot be satisfied. A word is allocated just before the start
of the vector to hold its size, and several (4 or 5) words are allocated just past the end
of the vector and filled with redundant data that is checked when the space is returned
to free store.

res := sys(Sys globin, seg) CIN:y, POS:y, NAT:n
This initializes the global variables define in the loaded module pointed to by seg.

It returns zero is there is an error.

res := sys(Sys graphics,...) CIN:y, POS:y, NAT:y
This is currently only useful on the Windows CE version of the BCPL Cintcode

system. It performs an operation on the graphics window. The graphics window is
a fixed size array of 8-bit pixels which can be written to and whose visibility can be
switched on and off.

res := sys(Sys inc, addr, amount) CIN:y, POS:y, NAT:y
This function adds amount atomically to the specified memory location and returns

it new value.

res := sys(Sys interpret, regs) CIN:y, POS:y, NAT:n
This function enters the Cintcode interpreter recursively with the Cintcode registers

set to values specified in the vector regs. The elements of regs are as follows:

res := sys(Sys intflag) CIN:y, POS:y, NAT:y
This returns TRUE if the user has pressed a particular combination of keys to in-

terrupt the program that is currently running. On many systems this mechanism not
implemented and so just returns FALSE.

res := sys(Sys loadseg, name) CIN:y, POS:y, NAT:n
This loads a Cintcode module from file name. Under cintsys, if name is a relative

file name it searches the current directory followed by the directories specified by the
environment variable BCPLPATH. If these all fail, cin/ is prepended to the file name
which is then looked up in the directory specified by the BCPLROOT environment variable.
Under cintpos, the environment variables POSPATH and POSROOT are used. The -cin

option can be used with either cintsys or cintpos to override these defaults. To check
that these variables are set correctly enter cintsys or cintpos with the -f option.

If loading is successful, loadseg returns the list of loaded program sections, other-
wise it returns zero. Before the loaded code can be used, its globals must be initialised
using globin.

Cintcode modules generated by the BCPL compiler are typically text files contain-
ing the compiled code encoded in hexadecimal (although a purely binary representation
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is available). The compiled form of the logout command:

SECTION "logout"
GET "libhdr"
LET start() BE abort(0)

is

000003E8 0000000E
0000000E 0000FDDF 474F4C0B 2054554F 20202020
0000DFDF 6174730B 20207472 20202020 7B1C2310
00000000 00000001 00000024 0000001C

The first two words (000003E8 0000000E) indicate the presence of a “hunk” of code
of size 14(000000E) words which then follow. The first word of the hunk (000000E)
is again its length. The next four words (0000FDDF 474F4C0B 2054554F 20202020)
contain the SECTION name "logout". These are followed by the four words 0000DFDF
6174730B 20207472 20202020 which hold the name of the procedure "start". The
body of start is compiled into one word (7BF1C2310) which correspond to the Cintcode
instructions:

L0 Load A with 0
K3G 28 Call the function in global 28, incrementing the stack by 3
RTN Return from start – never reached

sys(Sys lockirq) CIN:y, POS:y, NAT:y
Under cintpos, this call disables interrupts.

res := sys(Sys muldiv, a, b, c) CIN:y, POS:y, NAT:y
This invoke the C implementation of muldiv. It returns the result of dividing c into

the double length product of a and b. It sets result2 to the remainder. This function
is little used since the muldiv function is now defined in syslib invoking the Cintcode
instruction MDIV.

fp := sys(Sys openread, name, envname) CIN:y, POS:y, NAT:y
This opens for reading the file whose name is given by the string name. It returns

0 if the file cannot be opened, otherwise it returns the file pointer for the opened file.
See page 65 for information about the treatment of file names. If name is a relative
filename, the file is first searched for in the current directory, otherwise, if envname is
non null, the directories specified by the environment variable envname are searched.

res := sys(Sys openreadwrite, name) CIN:y, POS:y, NAT:y
This opens for reading and writing the file whose name is given by the string

name. It returns 0 if the file cannot be opened, otherwise it returns the file pointer
for the opened file. See page 65 for information about the treatment of file names.
An opened file can be thought of as a potentially huge vector of bytes with a pointer
to the position of the next byte to transfer. Reading or writing bytes from or to the
file cause this pointer to be advanced by the appropriate amount. This pointer can be
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explictly set using sys(Sys seek,...) described below and its current value obtained
by sys(Sys tell,...) also described below.

fp := sys(Sys openwrite, name) CIN:y, POS:y, NAT:y
This opens for writing the file whose name is given by the string name. It returns

0 if the file cannot be opened, otherwise it returns the file pointer for the opened file.
See page 65 for information about the treatment of file names.

res := sys(Sys platform) CIN:y, POS:y, NAT:y

res := sys(Sys putsysval, addr, val) CIN:y, POS:y, NAT:n

sys(Sys quit, code) CIN:y, POS:y, NAT:n
This saves the Cintcode registers in the vector of registers given to the interpreter

when it was invoked and returns with the result code to the (C) program that called
this invocation of the interpreter. This is normally used to exit from the Cintcode
system, but can also be used to return from recursive invocations of the interpreter
(see sys(Sys interpret,regs) above). A code of zero denotes successful completion
and, if invoked at the outermost level, causes the BCPL Cintcode System to terminate.

n := sys(Sys read, fp, buf, len) CIN:y, POS:y, NAT:y
This reads upto len bytes from the file specified by the file pointer fp into

the byte buffer buf. The file pointer must have been created by a call of
sys(Sys openread,...). The number of bytes actually read is returned as the re-
sult.

res := sys(Sys renamefile, old, new) CIN:y, POS:y, NAT:y
This renames file old to new. It return 0 if successful.

sys(Sys rti, regs) CIN:n, POS:y, NAT:n
Under Cintpos, this returns from an interrupt by setting the Cintcode registers to

the values specified by regs.

ch := sys(Sys sardch) CIN:y, POS:y, NAT:y
This returns the next character from standard input (normally the keyboard). The

character is echoed to standard output (normally the screen). If the -c or -- command
options are given when cintsys or cintpos is invoked, standard input is prefixed with
text from the command line. For details, see Section 11.2 on page 156.

sys(Sys saveregs, regs) CIN:n, POS:y, NAT:n
Under Cintpos, this saves the current Cintcode registers in regs.

sys(Sys sawrch, ch) CIN:y, POS:y, NAT:y
This sends character repesented by the least significant 8 bit of ch to the standard
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output (normally the screen). If ch=10, the characters carriage return followed by
linefeed are transmitted.

res := sys(Sys seek, fd, pos) CIN:y, POS:y, NAT:y

oldcount := sys(Sys setcount, newcount) CIN:y, POS:y, NAT:n
One of the Cintcode registers is called count which is inspected just before the

interpreter processes the next instruction. If count>0 it is decremented and the in-
struction processed. If count=0 the interpreter returns to the calling (C) program with
error code 3.

The Cintcode System normally has two resident interpreters. One is called cinterp

implemented in C and the other is called fasterp which is sometimes implemented in
assembly language. fasterp is faster than cinterp since it provides fewer debugging
aids, does not count instruction executions and does not implement the profiling feature.
Setting count to a negative value causes this faster interpreter to be invoked and setting
count to a positive value causes the slower interpreter to be used. Normally the CLI
command interpreter is used to make this switch, see Section 4.3.

With some debugging versions of fasterp, setting count to -2 causes it to exe-
cute just one instruction before returning with error code 10. This feature assists the
debugging of a new versions of fasterp and is particularly useful when fasterp is
implemented in assembly language.

regs!0 A register – work register
regs!1 B register – work register
regs!2 C register – work register
regs!3 P register – the stack frame pointer
regs!4 G register – the base of the global vector
regs!5 ST register – the status register (unused)
regs!6 PC register – the program counter
regs!7 Count register – see below
regs!8 MW register – Used only on 64-bit systems, see below

The count register is normally decremented every time a Cintcode instruction is
interpreted. When the count reaches zero the interpreter saves the registers and returns
with a result (=3) to indicate that this has happened. If the count register is positive,
it indicates how many Cintcode instructions should be executed before the interpreter
returns. A count of -1 is treated as infinity and causes the fast interpreter fasterp to
be used.

Either interpreter returns when a fault, such as division by zero, occurs or when
a call of sys(Sys_quit,...) or sys(Sys_setcount,...) is made. When returning,
the current state of the Cintcode registers is saved. The returned result is either
the second argument of sys(Sys_quit,...) or one of the builtin return codes in the
following table:
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-1 Re-enter the interpreter with a new value in the the count
register

0 Normal successful completion (by convention)
1 Non existant Cintcode instruction
2 BRK instruction encountered
3 Count has reached zero
4 PC set to a negative value
5 Division by zero
10 Single step interrupt from the fast interpreter (debugging)
11 The value of the watched location in the Cincode memory

has changed in the course of executing the previous instruc-
tion

res := sys(Sys setprefix, prefix) CIN:y, POS:y, NAT:y
This is primarily a function for the Windows CE version of the BCPL Cintcode

System for which there is no current working directory mechanism. It sets the prefix
that is prepended to all future relative file names. See Section 3.3.2 and the CLI prefix
command described on page 82.

res := sys(Sys setraster, n, arg) CIN:y, POS:y, NAT:n
There is a variant of cintsys called rastsys that provides a means of generating

data for time-memory images, and cintpos has a similar variant called rastpos. The
setraster operation controls the rastering feature as follows. If n=3, it returns 0 if
rastering is available and -1 otherwise. If n=2, the memory granularity is set to arg
bytes per pixel, the default being 12. If n=1, the number of Cintcode instructions
executed per raster line is set to arg, the default being 1000. If n is zero and arg is
non-zero then rastering is activated sending its output to the file with name arg (the
rastering data file). Raster information is normally collected for the duration of the
next CLI command. If n and arg are both zero, the rastering data file is closed.

The raster data file is an text file that encodes the raster lines using run length
encoding. Typical output is as follows:

K1000 S12 1000 instruction per raster line, 12 bytes per pixel
W10B3W1345B1N 10 white, 3 black, 1345 white, 1 black, newline
W13B3W12B2N etc
...

See the CLI commands raster and rast2ps on page 84 for more information on
how to use the rastering facility.

res := sys(Sys sound, fno, a1, a2 ...) CIN:y, POS:y, NAT:y
This calls sound(args, g) where sound is a C function defined in sysc/sound.c.

The argument args points to memory locations holding fno, a1, a2, etc., and g points
to the base of the global vector.

The following table summarises the sound features available (when running under
Linux).
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Function number Purpose

fno=0 Test for sound
res is TRUE if the sound feature is implemented.

fno=1 Open sound device for input
a1 = typically ”/dev/dsp” or ”/dev/dsp1”
a2 = sample format, eg 16 for S16 LE, 8 for U8
a3 = channels, typically 1 for mono or 2 for stereo
a4 = rate ie samples per second, typically 44100
res is the file descriptor (an integer) of the opened device

or -1 if error.

fno=2 Read samples
a1 = the file descriptor
a2 = the buffer
a3 = the number of bytes to read
res = the number of bytes transferred into the buffer

fno=3 Close a sound device
a1 = the file descriptor

fno=4 Open a sound device for output
a1 = typically ”/dev/dsp” or ”/dev/dsp1”
a2 = sample format, eg 16 for S16 LE, 8 for U8
a3 = channels, typically 1 for mono or 2 for stereo
a4 = rate ie samples per second, typically 44100
res is the file descriptor (an integer) of the opened device

or -1 if error.

fno=5 Write samples
a1 = the file descriptor
a2 = the buffer
a3 = the number of bytes to write
res = the number of bytes actually transferred

fno=6 Open a sound device for output
a1 = typically ”/dev/midi” or ”/dev/dmmidi1”
res is the file descriptor (an integer) of the opened device

or -1 if error.

fno=7 Write MIDI bytes
a1 = the file descriptor
a2 = the buffer
a3 = the number of MIDI bytes to write
res = the number of bytes actuallty transferred

Note that it may be necessary to run alsamixer to enable the sound device and adjust
its volume setting.
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sys(Sys setst, val) CIN:n, POS:y, NAT:n
Under Cintpos, this sets the Cintcode ST register to val. Interrupts are enabled

only when ST is zero. By convention, ST=1 why execution within klib, ST=2 when
executing within the interrupt routine, and ST=3 during the initial bootstrapping
process.

res := sys(Sys shellcom, comstr) CIN:y, POS:y, NAT:y

sys(Sys tally, val) CIN:y, POS:y, NAT:n
This call provides a profiling facility that uses a globally accessible tally vector to

hold frequency counts of Cintcode instructions executed. When val is TRUE the tally
vector is cleared and tallying is enabled. When val is FALSE tallying is disabled. When
tallying is active, the ith element of the tally vector is incremented every time the
instruction at location i of the Cintcode memory is executed. The size of the tally
vector can be specified by the -t command line argument (see Section 11.2) when the
interpreter is entered. The default size being typically 80000 words. The tally vector
is held in rootnode!rtn tallyv with the upper bound stored in its zeroth element. It
can thus be inspected by any program.

Statistics of program execution is normally gathered and analysed using the CLI
command stats (see Section 4.3).

pos := sys(Sys tell, fd) CIN:y, POS:y, NAT:y

sys(Sys tracing, val) CIN:y, POS:y, NAT:n
This sets the Cintcode tracing mode to val. When the tracing mode is TRUE, the

Cintcode interpreter outputs a one line trace of every Cintcode instruction executed.

res := sys(Sys unloadseg, seg) CIN:y, POS:y, NAT:y
This unloads the the loaded module given by seg. If seg is zero it does nothing.

Unloading a module just returns the space it occupied to freestore.

sys(Sys unlockirq) CIN:n, POS:y, NAT:n
Under cintpos, this call enables interrupts.

res := sys(Sys usleep, usecs) CIN:y, POS:y, NAT:y
Under cintsys, this call causes the system to sleep for usecs micro-seconds. Under

cintpos, it causes the current task to sleep for usecs micro-seconds.

sys(Sys waitirq) CIN:y, POS:y, NAT:y

sys(Sys watch, addr) CIN:y, POS:y, NAT:n
This sets the address of a location of Cintcode memory to be inspected every time

the interpreter executes and instruction. When the watched value changes it returns
with result 12. The watch feature is disabled if addr is zero or if fasterp is being used.
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n := sys(Sys write, fp, buf, len) CIN:y, POS:y, NAT:y
This writes len bytes to the file specified by the file pointer fp from the byte buffer

buf. The file pointer must have been created by a call of sys(Sys openwrite,...).
The result is the number of bytes transferred, or zero if there was an error.

unloadseg(segl) CIN:y, POS:y, NAT:y
This routine unloads the list of loaded program modules given by segl.

res := unrdch() CIN:y, POS:y, NAT:y
This attempts to step the current input stream back by one character position. It

returns TRUE if successful, and FALSE otherwise. A call of unrdch will always succeeds
the first time after a call of rdch. It is useful in functions such as readn where single
character lookahead is necessary. See Section 3.3.1 for more detailed information.

wrch(ch) CIN:y, POS:y, NAT:y
This routine writes the character ch to the currently selected output stream. If

output is to the screen, ch is transmitted immediately. It aborts (with code 189) if
there is a write failure.

writed(n, d) CIN:y, POS:y, NAT:y
writeu(n, d) CIN:y, POS:y, NAT:y
writen(n) CIN:y, POS:y, NAT:y

These routines output the integer n in decimal to the currently selected output
stream. For writed and writeu, the output is padded with leading spaces to fill a field
width of d characters. If writen is used or if d is too small, the number is written
without padding. If writeu is used, n is regarded as an unsigned integer.

writehex(n, d) CIN:y, POS:y, NAT:y
writeoct(n, d) CIN:y, POS:y, NAT:y
writebin(n, d) CIN:y, POS:y, NAT:y

These routines output, repectively, the least significant d hexadecimal, octal or
binary digits of the integer n to the currently selected output stream.

writes(str) CIN:y, POS:y, NAT:y
writet(str, d) CIN:y, POS:y, NAT:y

These routines output the string str to the currently selected output stream. If
writet is used, trailing spaces are added to fill a field width of d characters.

writef(format,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)

CIN:y, POS:y, NAT:y
The first argument (format) is a string that is copied character by character to

the currently selected output stream until a substitution item such as %s or %i5 is
encountered when a value (usually the next argument) is output in the specified format.
The substitution items are given in table 3.6.

When a field width (denoted by n in the table) is required, it is specified by a
single character, with 0 to 9 being represented by the corresponding digit and 10 to
35 represented by the letters A to Z. Format characters are case insensitive but field
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Item Substitution

%s Write the next argument as a string using writes.
%tn Write the next argument as a left justified string in a

field width of n characters using writet.
%c Write the next argument as a character using wrch.
%# Write the next argument as an extended in UTF-8 or

GB2312 format using codewrch.
%bn Write the next argument as a binary number in a field

width of n characters using writebin.
%on Write the next argument as an octal number in a field

width of n characters using writeoct.
%xn Write the next argument as a hexadecimal number in a

field width of n characters using writehex.
%in Write the next argument as a decimal number in a field

width of n characters using writed.
%n Write the next argument as a decimal number in its

natural field width using writen.
%un Write the next argument as an unsigned decimal number

in a field width of n characters using writeu.
%n.md Write the next argument as a scaled decimal number in

a field with of n with m digits after the decimal point.
%+ Skip over the next argument.
%- Step back to the previous argument.
%% Write the character %.
%pc Plural formation. Write character c if the next argument

is not 1.
%p\a\b\ Plural formation. Write text a if the next argument is

1, otherwise write text b.
%f Take the next argument as a writef format string and

call writef recursively to process it passing it the re-
maining arguments. The argument pointer is advanced
by the appropriate amount

%m The next arument is taken as a message number and
processes as for %f above using the message format
string obtained by the call get text(messno, str,

upb) where str is a vector local to writef to hold the
message string. This provides an easy way to generate
messages in different languages. get text is a global
function typically defined by the user. The default ver-
sion always yields the message string "<mess:%-%n>"

Figure 3.6: writef substitution items
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width characters are not. A recent entension allows the field width to be specified as a
decimal integer immediately following the percent, as in %12i meaning %iB.

Some examples of the %n.md substitution item are given below.

writef("%9.2d", 1234567) writes 12345.67

writef("%9.2d", -1234567) writes -12345.67

writef("%9.0d", 1234567) writes 1234567

writef("%9d", 1234567) writes 1234567

As an example of how the %p substitution item can be used, the following code:

FOR count = 0 TO 2 DO
writef("There %p\ is\are\ %-%n thing%-%ps.*n", count)

outputs:

There are 0 things.
There is 1 thing.
There are 2 things.

The implementation of writef (in sys/blib.b) is a good example of how a variadic
function can be defined.

3.3.1 Streams

BCPL uses streams as a convenient method of obtaining device independent input and
output. All the information needed to process a stream is held in a vector called a
stream control block (SCB) whose fields have already been summarized in Section 3.1.

The elements pos and end hold positions within the byte buffer, file holds a file
pointer for file streams or -1 for streams connected to the console. The element id

indicates whether the stream is for input or output and work is private work space for
the action procedures rdfn, wrfn which are called, repectively, when the byte buffer
becomes empty on reading or full on output. The procedure endfn is called to close
the stream.

Input is read from the currently selected input stream whose SCB is held in the
global variable cis. For an input stream, pos holds the position of the next character to
be read, and end points to just past the last available character in the buffer. Characters
are read using rdch whose definition is given in figure 3.7. If a character is available in
the buffer it is returned after incrementing pos. Exceptionally, the character carriage
return (CR) is ignored since on some systems, such as Windows, lines are terminated
with carriage return and linefeed while on others, such as Linux, only linefeed is used.
If the buffer is exhausted, replenish is called to refill it, returning TRUE if one or
more character are transferred. If replenish fails it returns FALSE with the reason why
in result2. Possible reasons are: -1 indicating end of file, -2 indicating a timeout
has occurred and -3 meaning input is in polling mode and no character is currently
available. By setting the timeoutact field of the SCB to -1, a timeout is treated as
end of file.
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AND rdch() = VALOF
{ LET pos = cis!scb_pos // Position of next byte, if any

UNLESS cis DO abort(186)
IF pos<cis!scb_end DO { LET ch = cis!scb_buf%pos

cis!scb_pos := pos+1
IF ch=’*c’ LOOP // Ignore CR
RESULTIS ch

}

// If replenish returns FALSE, it failed to read any characters
// and the reason why is placed in result2 as follows
// result2 = -1 end of file
// result2 = -2 timeout
// result2 = -3 polling mode with no characters available.
// result2 = code error code
UNTIL replenish(cis) DO
{ IF result2=-2 DO

{ LET act = cis!scb_timeoutact // Look at the timeout action
IF act=-2 RESULTIS timeoutch // Timed out
IF act=-1 RESULTIS endstreamch // End of file reached
LOOP // Try replenishing again

}
RESULTIS result2<0 -> result2, endstreamch

}
} REPEAT

Figure 3.7: The definition of rdch

LET unrdch() = VALOF
{ LET pos = cis!scb_pos

IF pos<=scb_bufstart RESULTIS FALSE // Cannot UNRDCH past origin.
cis!scb_pos := pos-1
RESULTIS TRUE

}

Figure 3.8: The definition of unrdch

Whenever possible, the buffer contains the previously read character. This is to
allow for a clean and simple implementation of unrdch whose purpose is to step input
back by one character position. Its definition if given in figure 3.8.

Output is sent to the currently selected output stream whose SCB is held in the
global variable cos. The SCB field pos of an output stream holds the position in the
buffer of the next character to be written, and end holds the position just past the end
of the buffer. Characters are written using the function wrch whose definition is given
in figure 3.9. The character ch is copied into the byte buffer and pos incremented. If
the buffer is full, it is emptied by calling the element wrfn. If writing fails it return
FALSE, causing wrch to abort.
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AND wrch(ch) = VALOF
{ LET pos = cos!scb_pos

IF pos >= cos!scb_bufend DO
{ // The buffer is full

UNLESS deplete(cos) RESULTIS FALSE
UNLESS cos!scb_buf RESULTIS TRUE // Must be writing to NIL:
pos := cos!scb_pos

}

// Pack the character and advance pos.
cos!scb_buf%pos := ch
pos := pos+1
cos!scb_pos := pos
// Advance end of valid data pointer, if necessary
IF cos!scb_end < pos DO cos!scb_end := pos
cos!scb_write := TRUE // Set flag to indicate the buffer has changed.

UNLESS cos!scb_type<0 & ch<’*s’ RESULTIS TRUE // Normal return

// The stream is interactive and ch is a control character.

IF ch=’*n’ DO wrch(’*c’) // Fiddle for Cygwin

// Call deplete at the end of each interactive line.
IF ch=’*n’ | ch=’*p’ RESULTIS deplete(cos)
RESULTIS TRUE

}

Figure 3.9: The definition of wrch

3.3.2 The Filing System

BCPL uses the filing system of the host machine and so such details as the maximum
length of filenames or what characters they may contain are machine dependents. How-
ever, within a file name the characters slash (/) and backslash (\) are regarded as a
file separators and are converted into the appropriate separator for the operating sys-
tem being used. For Unix systems this is a slash, for MS-DOS, WINDOWS and OS/2
it is a backslash, and on the Apple Macintosh it is a colon. Thus, under MS-DOS,
findoutput can be given a file name such as "tmp/RASTER" and it will be treated
as if the name "tmp\RASTER" had been given. This somewhat ad hoc feature greatly
improves portability between systems.

A file name prefix feature is available primarily for systems such as Windows CE
where there is no concept of a current working directory. The system maintains a prefix
that is prepended to any non absolute file name before it is passed to the operating
system. A file name is absolute if it starts with a slash or backslash or, on Windows
systems, if it starts with a letter followed by a colon. A separator is placed between
the prefix and the given file name.

The current prefix can be inspected and changed using the calls: sys(32,prefix)
and sys(33), or the CLI command prefix described on page 82.
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3.4 Coroutine examples

This section contains example code that uses the coroutine mechanism.

3.4.1 A square wave generator

The following function is the main function of a coroutine that generates square wave
samples.

LET squarefn(args) = VALOF
{ LET freq, amplitude, rate = args!0, args!1, args!2

LET x = 0
cowait(@freq) // Return a pointer -> [freq, amplitude, rate]

{ // freq is a scaled fixed point value with
// three digits after the decimal point.
LET q4 = rate*1000
LET q2 = q4/2
UNTIL x > q2 DO { cowait(+amplitude) // First half cycle

x := x + freq
}

UNTIL x > q4 DO { cowait(-amplitude) // Second half cycle
x := x + freq

}
x := x - q4

} REPEAT
}

The following call creates a coroutine that initially generates a square wave with fre-
quency 440Hz and amplitude 5000 at a rate of 44100 samples per second.

sqco := initco(squarefn, 300, 440_000, 5_000, 44_100)
sqparmv := result2 // sqparmv -> [freq, amplitude, rate]

One second’s worth of samples can now be obtained by:

FOR i = 1 TO 44100 DO
{ LET sample = callco(sqco)

...
}

At any moment, the frequency and amplitude can be changed by assignments such as:

sqparmv!0 := newfrequency
sqparmv!1 := newamplitude

Other examples of the use of initco can be found below.
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3.4.2 Hamming’s Problem

A following problem permits a neat solution involving coroutines.

Generate the sequence 1,2,3,4,5,6,8,9,10,12,... of all
numbers divisible by no primes other than 2, 3, or 5”.

This problem is attributed to R.W.Hamming. The solution given here shows how data
can flow round a network of coroutines. It is illustrated in figure 3.10 in which each
box represents a coroutine and the edges represent callco/cowait connections. The
end of a connection corresponding to callco is marked by c, and end corresponding
to cowait is marked by w. The arrows on the connections show the direction in which
data moves. Notice that, in tee1, callco is sometimes used for input and sometimes
for output.

MAIN

BUF1 TEE1

X2 X3 X5

MER1 MER2

BUF2 TEE2 BUF3
w w w w w

w

w

w

ww

w

w c c c c

w
c

cc
c c

cc

c c

Figure 3.10: Coroutine data flow

The coroutine buf1 controls a queue of integers. Non-zero values can be in-
serted into the queue using callco(buf1,val), and values can be extracted using
callco(buf1,0). The coroutines buf2 and buf3 are similar. The coroutine tee1 is
connected to buf1 and buf2 and is designed so that callco(tee1) will yield a value
extracted from buf1, after sending a copy of it to buf2. tee2 similarly takes values
from buf2 passing them to buf3 and x3. Values passing through x2, x3 and x5 are mul-
tiplied by 2, 3 and 5, repectively. mer1 merges two monotonically increasing streams
of numbers produced by x2 and x3. The resulting stream is then merged by mer2 with
the stream produced by x5. The stream produced by mer2 is the required Hamming
sequence, each value of which is printed by main and then inserted into buf1.
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The BCPL code for this solution is as follows:

GET "libhdr"

LET buf(args) BE // Body of BUF1, BUF2 and BUF3
{ LET p, q, val = 0, 0, 0

LET v = VEC 200

{ val := cowait(val)
TEST val=0 THEN { IF p=q DO writef("Buffer empty*n")

val := v!(q REM 201)
q := q+1

}
ELSE { IF p=q+201 DO writef("Buffer full*n")

v!(p REM 201) := val
p := p+1

}
} REPEAT

}

LET tee(args) BE // Body of TEE1 and TEE2
{ LET in, out = args!0, args!1

cowait() // End of initialisation.

{ LET val = callco(in, 0)
callco(out, val)
cowait(val)

} REPEAT
}

AND mul(args) BE // Body of X2, X3 and X5
{ LET k, in = args!0, args!1

cowait() // End of initialisation.

cowait(k * callco(in, 0)) REPEAT
}

LET merge(args) BE // Body of MER1 and MER2
{ LET inx, iny = args!0, args!1

LET x, y, min = 0, 0, 0
cowait() // End of initialisation

{ IF x=min DO x := callco(inx, 0)
IF y=min DO y := callco(iny, 0)
min := x<y -> x, y
cowait(min)

} REPEAT
}
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LET start() = VALOF
{ LET BUF1 = initco(buf, 500)
LET BUF2 = initco(buf, 500)
LET BUF3 = initco(buf, 500)
LET TEE1 = initco(tee, 100, BUF1, BUF2)
LET TEE2 = initco(tee, 100, BUF2, BUF3)
LET X2 = initco(mul, 100, 2, TEE1)
LET X3 = initco(mul, 100, 3, TEE2)
LET X5 = initco(mul, 100, 5, BUF3)
LET MER1 = initco(merge, 100, X2, X3)
LET MER2 = initco(merge, 100, MER1, X5)

LET val = 1
FOR i = 1 TO 100 DO { writef(" %i6", val)

IF i REM 10 = 0 DO newline()
callco(BUF1, val)
val := callco(MER2)

}

deleteco(BUF1); deleteco(BUF2); deleteco(BUF3)
deleteco(TEE1); deleteco(TEE2)
deleteco(X2); deleteco(X3); deleteco(X5)
deleteco(MER1); deleteco(MER2)
RESULTIS 0

}
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Chapter 4

The Command Language

The Command Language Interpreter (CLI) is a simple interactive interface between
the user and the system. It loads and executes previously compiled programs that are
held either in the current directory or a directory specified by the environment variable
BCPLPATH. The source of the standard commands can be found in the com directory.
These commands are described below in Section 4.3. The command language is a
combination of the features provided by the CLI and the collection of commands that
can be invoked. Under Cintpos, exactly the same CLI code provides command language
interpreters in several contexts such as those created by the commands: run, newcli,
tcpcli and mbxcli. Details of the implementation of the CLI are given at the end of
this chapter from page 89.

Commands can set a return code in the global returncode with zero meaning
successful termination and other values indicating the severity of the fault. Commands
that set a non zero return code are expected to leave a reason code in result2. The
CLI copies the return code and reason code of the previous command into the CLI
variables cli returncode and cli result2, respectively. These can be inspected by
commands such as if and why and also used by the CLI to terminate a command-
command if the failure was severe enough. For details, see the command failat on
page 80 below.

4.1 Bootstrapping single threaded BCPL

When the Cintcode System is started, control is passed to the interpreter which, after
a few initial checks, allocates vectors for the memory of the cintcode abstract machine
and the tally vector available for statistics gathering. The cintcode memory is initialised
suitably for sub-allocation by getvec, which is then used to allocate space for the root
node, the initial stack and the initial global vector. The initial state shown in figure 4.1
is completed by loading the object modules SYSLIB, BLIB and BOOT, and initialising
the root node, the stack and global vector. Interpretation of cintcode instructions now
begins with the Cintcode register PC, P and G set as shown in the figure, and Count set
to -1. The other registers are cleared. The first Cintcode instruction to be executed is
the first instruction of the body of the routine start defined in sys/boot.b. Since no
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return link has been stored into the stack, this call of start must not attempt to return
in the normal way; however, its execution can still be terminated using sys(0,0).

The global vector and stack shown in figure 4.1 are used by start and form the
running environment both during initialization and while running the debugger. The
CLI, on the other hand, is provided with a new stack and a separate global vector,
thus allowing the debugger to use its own globals freely without interfering with the
command language interpreter or running commands. The global vector of 1000 words
is allocated for CLI and this is shared by the CLI program and its running commands.
The stack, on the other hand, is used exclusively by the command language interpreter
since it creates a coroutine for each command it runs.

stack globals

P Grootnode

0

PC

Entry to start

Tally vector

blklist

MSYSLIB MLIB MBOOT

Figure 4.1: The initial state

Control is passed to the CLI by means of the call sys(1,regs) which recursively
enters the intepreter from an initial Cintcode state specified by the vector regs in which
that P and G are set to point to the bases of a new stack and a new global vector for
CLI, respectively, PC is the location of the first instruction of startcli, and count is
set to -1. This call of sys(1,regs) is embedded in the loop shown below that occurs
at the end of the body of start.

{ LET res = sys(1, regs) // Call the interpreter
IF res=0 DO sys(0, 0)
debug res // Enter the debugger

} REPEAT

At the moment sys(1,regs) is first called, only globsize, sys and rootnode have
been set in the CLI global vector and so the body of startcli must be coded with care
to avoid calling global functions before their entry points have be placed in the global
vector. Thus, for instance, instead of calling globin to initialise the globals defined in
SYSLIB and BLIB, the following code is used:

sys(24, rootnode!rtn_syslib)
sys(24, rootnode!rtn_blib)

If a fault occurs during the execution of CLI or a command that it is running, the
call of sys(1,regs) will return with the fault code and regs will hold the dumped
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Cintcode registers. A result of zero, signifying successful completion, causes execution
of the Cintcode system to terminate; however, if a non zero result is returned, the
debugger in entered by means of the call debug(res). Note that the Cintcode registers
are available to the debugger since regs is a global variable. When debug returns,
the REPEAT-loop ensures that the command language interpreter is re-entered. The
debugger is briefly described in the section 6.

On entry to startcli, the coroutine environment is initialised by setting currco

and colist to point to the base of the current stack which is then setup as the root
coroutine. The remaining globals are the initialised and the standard input and output
streams opened before loading the CLI program by means of the following statement:

rootnode!rtn_cli := globin(loadseg("cli"))

The command language interpreter is now entered by the call start().

4.2 Bootstrapping Cintpos

Bootstrapping Cintpos is somewhat more complicated that bootstrapping the single
threaded version of BCPL since there are more resident modules of code, and the
Cintpos system structures and resident tasks must be set up. Bootstrapping starts when
the cintpos program is entered. It first decodes the command arguments, possibly
changing the Cintcode memory or tally vector sizes. It then allocates these vectors,
initialising every word of the Cintcode memory with the value #xDEADCODE. It also
allocates a vector to hold counts of how many blocks of each requested size have been
allocated getvec but not yet freed. It then allocates and initialises the stack and global
vector to be used by BOOT. The rootnode is then initialised, including the setting of
the fields: rtn boot (holding the module BOOT), rtn klib (holding the module KLIB),
rtn blib (holding the modules BLIB, SYSLIB and DLIB) and rtn sys (holding the
entry point to the function sys).

The initial values of the Cintcode registers are now placed in the register set
bootregs and then Cintcode interpreter is entered to start execution from this ini-
tial state. If the interpreter returns a non zero result, a message containing this value
is written to the standard output stream, and, if the rtn dumpflag field of the root
node is TRUE, the entire Cintcode memory is dumped to the file DUMP.mem in compacted
form suitable for inspection by commands such as dumpsys or dumpdebug.

4.2.1 The Cintpos BOOT module

The function start in BOOT is the very first BCPL compiled code to be entered when
Cintpos starts. On entry, the Cintcode registers A, B and C are zero, P and G point
to BOOT’s stack and global vector, and ST is set to 2, indicating that we are in BOOT

and that interrupts are disabled. The global vector has already been initialised to hold
all the entry points in BOOT, KLIB, BLIB, SYSLIB and DLIB, but the stack currently is
filled entirely with the value stackword=#xABCD1234 except for its zeroth word which
was set by cintpos to hold the stacksize. To improve the behaviour of the standalone
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debugger, this stack is turned into a root coroutine stack of the specified size, initialising
the globals currco and colist appropriately.

All input and output within BOOT and the standalone debugger is done using
the standalone version of rdch and wrch, so these globals are updated appropriately.
BOOT next intialises the variables used by the standalone debugger. These include
the vectors bpt addr, bpt instr and bpt dbgvars which respectively hold break point
address, breakpoint instructions that have been overwritten by the BRK instruction, and
the vector of the 10 standalone debugger variables V0 to V9. These three vectors are
placed in the rootnode to make them accessible both to the DEBUG task and to
dumpdebug when it is inspecting a system dump.

BOOT now creates and initialises a global vector and a stack to be used during the
further initialisation of the Cintpos system. The all elements of the global vector are
given values of the form globword(=#x8F8F0000)+n, except for the globals globsize
, sys, rootnode, currco and colist, the last two being set to zero. Every element of
the stack is set to stackword (=#xABCD1234). The register set klibregs is initialised,
giving zero to A, B and C, the stack and global vector pointers to P and G, the value
one to ST to indicate execution is in KLIB and interrupts are disabled, and the entry
point startklib in PC. This register set is then handed to a recursive call of the
interpreter. This inner call is the one than performs the rest of the initialisation and
enters the normal execution of the system. In due course the interpreter will return
with a completion code which controls what BOOT should do next.

A completion code of zero signifies successfully completion and BOOT causes the
termination of cintpos. A return code of -1 is special, causing BOOT to re-enter
the interpreter immediately. Its purpose is to allow a running program to change
which interpreter is used. There are typically two interpreters: a slow one in which
all debugging aids are turned on, and a fast one in which most aids are turned off.
The call sys(Sys interpret, regs) selects the fast interpreter if the count register
in regs is -1, otherwise it selects the slow interpreter. The return code -2 allows
a running program to invoke the dummpmem mechanism to write the file DUMP.mem
representing the current state of the Cintcode memory. Any other return code caused
BOOT to invoke the standalone debugger, which many in due course return allowing
the interpreter to be re-entered.

BOOT cunningly places a private version of the sys function in its global vector
so that, even if a breakpoint is set in the public version of sys, BOOT and in partic-
ular the standalone debugger can continue to work as normal. When BOOT invokes
the interpreter for the first time execution begins at the start of klibstart which is
described in the next section.

4.2.2 klibstart

Needs to be written.



4.3. COMMANDS 75

4.3 Commands

This section describes the Command Language Interpreter commands whose source
code can be found in either cintcode/com or cintpos/com. The rdargs argument
format string for each command is given.

abort NUMBER CIN:y, POS:y, NAT:y
The command: abort n calls the BLIB function abort with argument n. If n is

zero, this causes a successful return from the BCPL system. If n is non zero, the
interactive debugger is entered with fault code n. The default value for n is 99. The
interactive debugger is described in section 6.

adjclock offset CIN:y, POS:y, NAT:y
The syntax of offset is [-][h][:m], that is: an optional minus sign, followed by an

optional number of hours, followed optionally by :m to specify a number of minutes.
The offset is converted into a signed integer representing the number of minutes to be
added to the time of day as supplied by the system. If adjclock is given no argument,
it just outputs the current offset.

alarm AT/A,MESSAGE CIN:n, POS:y, NAT:n
This command is only available under Cintpos. Its first parameter has the format:

[+][[hours:]minutes:]seconds. If + is present the time is relative to now. The
command suspends itself until the specified time, then outputs the time followed by
the message. Typical usage is as follows:

run alarm +3:30 "You time is up!"

After three and a half minute a message such as the following will appear.

*** Alarm: time is 15:13:14 - You time is up!

bcpl FROM/A,TO/K,VER/K,SIZE/K/N,TREE/S,NONAMES/S,
D1/S,D2/S,OENDER/S,EQCASES/S,BIN/S,XREF/S,GDEFS/S,HDRS/K,

GB2312/S,UTF8/S,SAVESIZE/K/N CIN:y, POS:y, NAT:y
This invokes the BCPL compiler. The FROM argument specified the name of the file

to be compiled. If the TO argument is given, the compiler generates code to the specified
file. Without the TO argument the compiler will output the OCODE intermediate
form to the file ocode as a compiler debugging aid. This file can be converted to a
more readable form usinf the procode command, described below. The VER argument
redirects the standard output to a named file. The SIZE argument specified the size
of the compiler’s work space. The default is 100,000 words. The NONAMES switch
causes the compiler not include section and function names in the compiled code. The
switches D1 and D2 control compiler debugging output. D1 causes a readable form of the
compiled Cintcode to be output. D2 causes a detailed trace of the internal working of
the codegenerator to be output. D1 and D2 together causes a slightly more detailed trace
of the internal working of the codegenerator. OENDER causes code to be generated for a
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machine with the opposite endianess of the machine on which the compiler is running.
EQCASES causes all identifiers to be converted to uppercase during compilation. This
allows very old BCPL programs to be compiled. BIN causes the target cintcode to be
in binary rather than the ASCII encoded hexadecimal normally used. The XREF option
causes a line to be output by the compiler for each non local identifier occurring in the
program. A typical such line is as follows:

all G:201 LG queens.b[9] all&~(ld|row|rd)

It shows that the variable all was declared as global variable 201 and its was loaded
in the compilation of statements on line 9 of the program queens.b and the context of
its use was: all&~(ld|row|rd). These lines can be filtered and sorted to form a cross
reference listing of a program. See, for instance, the file BCPL/cintcode/xrefdata or
Cintpos/cintpos/xrefdata.

The GDEFS switch is a debugging aid to output the global numbers of any global
function defined in the program. For example:

bcpl gdefs com/bench100.b to junk

generates the following output:

BCPL (3 July 2007)
G 1 = start
G259 = trace
G260 = schedule
G261 = qpkt
G262 = wait
G263 = holdself
G264 = release
G270 = idlefn
G271 = workfn
G272 = handlerfn
G273 = devfn
Code size = 1436 bytes

The UTF8 and GB2312 options specify the default encoding for extended characters
in string and character constants. This default can be overridden in individual constants
using the *#u and *#g escape sequences, as described on page 13.

The SAVESIZE option allows the user to specify the number of words in the argument
stack used to hold function return information. The default value is three making room
for the old P pointer, the return address and the entry point of the current function.
When compiling into native code using the Sial mechanism, the save space size may
be different, since, for instance, some or all of this information may be stored in the
hardware (SP) stack.

bcpl2sial FROM/A,TO/K,VER/K,SIZE/K/N,TREE/S,NONAMES/S,
D1/S,D2/S,OENDER/S,EQCASES/S,BIN/S,XREF/S,GDEFS/S,HDRS/K,

GB2312/S,UTF8/S,SAVESIZE/K/N CIN:y, POS:y, NAT:y

This command compiles a BCPL program into the internal assembly language Sial
which is designed as a low level intermediate target code for BCPL and is described in
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Section 9.1. The command sial-sasm, described below, can be used to convert Sial
into a human readable form and various commands, such as sial-386 and sial-alpha

will convert Sial to assembly language for corresponding architectures. The bcpl2sial
command takes the same arguments as the BCPL command.

bcplxref FROM/A,TO/K,PAT/K CIN:y, POS:y, NAT:y
This command outputs a cross reference listing of the program given by the FROM

argument. This consists of a list of all identifiers used in the program each having a list
of line numbers where the identifier was used and a letter indicating how the identifier
was declared. The letters have the following meanings:

V Local variable
P Function or Routine
L Label
G Global
M Manifest
S Static
F FOR loop variable

The TO argument can be used to redirect the output to a file, and the PAT argument
supplies a pattern to restrict which names are to be cross referenced. Within a pattern
an asterisk will match any sequence of characters, so the pattern a*b* will match
identifiers such as ab, axxbor axbyy. Upper and lower case letters are equated.

bench100 CIN:y, POS:y, NAT:y

bin-hex CIN:y, POS:y, NAT:y

bin-x8 CIN:y, POS:y, NAT:y

bounce CIN:n, POS:y, NAT:n
This command is part of the bounce demonstration that is only available under

Cintpos. It is normally invoked by the command: run bounce which creates a new
CLI task and then enters the bounce program whose main loop is:

qpkt(taskwait()) REPEAT

which repeatedly suspends the task until a packet is received then immediately returns
it to the sender. Packets are normally sent to the bounce task using the send command,
described below.



78 CHAPTER 4. THE COMMAND LANGUAGE

break CIN:y, POS:y, NAT:y

c command-file arguments CIN:y, POS:y, NAT:y
The c command allows a file oc commands to be executed as though they had just

been typed in. The argument command-file gives the name of the file containing the
command sequence.

Unless explicitly changed, the characters ’=’, ’<’, ’>’, ’$’ and ’.’ have special mean-
ings within a command command. A dot ’.’ at the start of a line starts a directive
which can specify the command command’s argument format, or replace one of the
special character with an alternative. There are six possible directives as follows:

.KEY or .K str argument format string

.DEFAULT or .DEF key value give key a default value

.BRA ch use ch instead of <

.KET ch use ch instead of >

.DOLLAR ch use ch instead of $

.DOT ch use ch instead of .

All directives must occur at the start of the command file. The .KEY directive
specifies a format string of the form used by rdargs (see page 49) that describes
what arguments can follow the command file name. The .DEFAULT directive specifies
the default value that a specified key should have if the corresponding argument was
omitted. The remaining directives allow the special characters to be changed.

The command sequence occurs after all the directives and may contain items of the
form <key$value> or <key> where key is one of the keys in the format string and value
is a default value. Such items are textually replaced by its corresponding argument or
a default value. If $value is present, this overrides (for this item only) any default that
might have been given by a .DEFAULT directive.

casech FROM/A,TO/A,DICT/K,U/S,L/S,A/S CIN:y, POS:y, NAT:y
This command systematically converts all reserved words of a BCPL program to

upper case and changing all identifiers to upper case (U), lower case (L, or in the form
given by a specified dictionary (DICT).

changepri CIN:y, POS:y, NAT:y

checksum FROM/A,TO/K CIN:y, POS:y, NAT:y
This command calculates a check sum for the file specified by the FROM argument,

sending the result to the file specified by the TO argument.
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cmpltest CIN:y, POS:y, NAT:y

cobench CIN:y, POS:y, NAT:y

cobounce CIN:y, POS:y, NAT:y

compare CIN:y, POS:y, NAT:y

cosim CIN:y, POS:y, NAT:y

dat CIN:y, POS:y, NAT:y

date CIN:y, POS:y, NAT:y

delete ,,,,,,,,, CIN:y, POS:y, NAT:y
This command will delete up to ten given files.

detab FROM/A,TO/K,SEP/K CIN:y, POS:y, NAT:y
This command copies the file give by the FROM argument to the file given by the TO

argument replacing all tab characters by spaces. The tabs are separated by a distance
specified by the SEP argument. The default is 8.

dumpdebug CIN:y, POS:y, NAT:y

dumpmem CIN:y, POS:y, NAT:y

dumpsys CIN:y, POS:y, NAT:y

echo TEXT,N/S CIN:y, POS:y, NAT:y
This command will output its first argument TEXT, if given. The text will be

followed by a newline unless the switch N is set.

edit FROM/A,TO,WITH/K,VER/K,OPT/K CIN:y, POS:y, NAT:y
This command is meant to provide a simple line editor. It used to run on the Tripos

Portable Operating System but has not been modified to run on this system.
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endcli CIN:y, POS:y, NAT:y

enlarge CIN:y, POS:y, NAT:y

fail CODE CIN:y, POS:y, NAT:y
This command just returns to the CLI with a completion code given by CODE. The

default code is 20.

failat CIN:y, POS:y, NAT:y

getlogname CIN:y, POS:y, NAT:y

harness CIN:y, POS:y, NAT:y

help CIN:y, POS:y, NAT:y

hex-bin CIN:y, POS:y, NAT:y

hexdump CIN:y, POS:y, NAT:y

hold CIN:y, POS:y, NAT:y

idvec CIN:y, POS:y, NAT:y

if CIN:y, POS:y, NAT:y

input TO/A,TERM/K CIN:y, POS:y, NAT:y
This command will copy text from the current input sending it the the file specified

by the AS argument. The input is terminated by a line starting with /* or the value of
the TERM argument if given.

interpreter FAST/S,SLOW/S| CIN:y, POS:y, NAT:y
This command allows the user to select the fast (cintasm) or the slow (cinterp)

version of the interpreter. If no arguments are given the fast one is selected. It is
implemented using sys(0,-1) or sys(0,-2) as described on page 56.
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join ,,,,,,,,,,,,,,,AS/A/K,CHARS/S CIN:y, POS:y, NAT:y
This command will concatenat several files sending the result to the file specified

by the AS argument. If the CHARS switch is given the files are treated as text files,
otherwise they are copied in binary.

lab label CIN:y, POS:y, NAT:y
This command read the rest of the command line but otherwise has no effect. It is

used as the destination of skip commands.

library CIN:y, POS:y, NAT:y

logout CIN:y, POS:y, NAT:y
This command causes an exit from the BCPL Cintcode System, typical returning

to an operating system shell.

makeinit CIN:y, POS:y, NAT:y

map BLOCKS/S,NAMES/S,CODE/S,MAPSTORE/S,TO/K,PIC/S CIN:y, POS:y, NAT:y
This command outputs the state of the Cintcode memory in a form that depends

on the arguments given. The output goes to the screen unless a filename is given using
the TO keyword.

mbxcli MBXNAME CIN:n, POS:y, NAT:n
n This command creates a new CLI task taking input from the specified mailbox,
typically MBX:name.If no argument is specified the default mailbox MBX:commands is
used. Any task can write command lines to a mailbox in a first come first served
manner and any CLI created by mbxcli can read and perform them, similarly in a first
come first served manner. If a mailbox CLI performs the endcli command it commits
suicide.

mbxrx -n,-d,-b/K CIN:n, POS:y, NAT:n
n This command is designed to test the mailbox system under Cintpos. It will read
a number of mailbox lines specified by the -n argument. Each line read is written to
the standard output stream. It then delays for a number of ticks specified by the -d

argument before reading the next mailbox line. The mailbox is specified by the -b

argument with the default being MBX:junk.

mbxtx -n,-d,-b/K CIN:n, POS:y, NAT:n
n This command is designed to test the mailbox system under Cintpos. It will
write a number of lines specified by the -n argument to a mailbox. Each line sent is
written to the standard output stream. It then delays for a number of ticks specified
by the -d argument before sending the next mailbox line. The mailbox is specified by
the -b argument with the default being MBX:junk.
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mcpl CIN:y, POS:y, NAT:y

mcpl2mial CIN:y, POS:y, NAT:y

mial-386.b CIN:y, POS:y, NAT:y

mial-masm CIN:y, POS:y, NAT:y

mkdata CIN:y, POS:y, NAT:y

mkjunk CIN:y, POS:y, NAT:y

newcli CIN:y, POS:y, NAT:y

nlconv FILE,TOUNIX/S,TODOS/S,Q/S CIN:y, POS:y, NAT:y
Thus command replaces the specified file with one in which line endings have been

replaced by those appriate for the desination system which is specified by the switches
TOUNIX (the default) or Windows systems (TODOS). The Q argument quietens the com-
mand.

origbcpl CIN:y, POS:y, NAT:y
This is an old version of the BCPL compiler dated 13 August 2001.

playback CIN:y, POS:y, NAT:y

playfast CIN:y, POS:y, NAT:y

playtime CIN:y, POS:y, NAT:y

prefix PREFIX,UNSET/S CIN:y, POS:y, NAT:y
If the first argument is given, it becomes the current prefix string. If UNSET is

specified, the prefix string is unset, and if no argument is given the current prefix is
output. This command is implemented using sys(Sys setprefix,prefix) and sys(33)

described on page 58. See also Section 3.3.2.

preload ,,,,,,,,, CIN:y, POS:y, NAT:y
This command will preload up to 10 commands into the Cintcode memory. With-

out arguments it outputs the list of preloaded commands. Preloading improves the
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efficiency of command execution and is also useful in conjunction with the stats com-
mand, see below.

prmcode CIN:y, POS:y, NAT:y

This command converts an MCODE (intermediate code for MCPL) file specified by
FROM to a more readable form. If FROM is missing it reads from the file MCODE. If the TO

argument is missing it send the result to the screen. The file MCODE is a byproduct
of the mcpl command, see mcpl above.

procode FROM,TO/K CIN:y, POS:y, NAT:y
This command converts an OCODE (intermediate code for BCPL) file specified by

FROM to a more readable form. If FROM is missing it reads from the file OCODE. If the TO

argument is missing it send the result to the screen.

prompt PROMPT,NO/S CIN:y, POS:y, NAT:y
If the NO switch is given prompts are disabled, otherwise they will be enabled. Under

Cintpos, disabling prompts is useful, for instance, if a CLI task is taking input from a
tcp/ip connection where the source of the commands is another program. The PROMPT

argument is optional, but if present will be the new prompt format string. Prompts
are generated by the CLI using a call of the following form.

writef(prompt, cpumsecs, taskno, hours, mins, secs)

where prompt is the prompt format string, cpumsecs is the time in milliseconds used
by the previous command, taskno is the current task number under Cintpos and zero
otherwise. The arguments hours, mins, and secs represent the current time of day.
The default prompt format under Cintpos is: "%+%n> " and under the other systems
is: "%+%n> ". An example of how it might be used is as follows.

0>
0> prompt "%+%+%z2:%z2:%z2 %-%-%-%-%-%n> "
15:11:52 0>
15:11:55 0> bench100

bench mark starting, Count=1000000

starting

finished
qpkt count = 2326410 holdcount = 930563
these results are correct
end of run
15:12:14 10690>

This shows that bench100 finished execution 14 seconds after 3:12 pm after running
for 10.690 seconds.
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quit RC/N CIN:y, POS:y, NAT:y

rast2ps FROM,SCALE,TO/K,ML,MH,MG,FL,FH,FG,

DPI/K,INCL/K,A4/S,A3/S,A2/S,A1/S,A0/S CIN:y, POS:y, NAT:y
This commands converts a raster data file (written using the raster command

described above) into a postscript file suitable for printing. There are parameters to
control the region to convert, the output paper size and other parameters. It is also
possible to posible to include anotations in the resulting picture.

The FROM parameter specifies the name of the raster data file. RASTER is the default.
SCALE specifies a magnification as a percentage. The default is 80. The TO parameter
specifies the name of the postscript file to be generated. RASTER.ps is the default.
The parameters ML and MH specify the low and high limits of the address space to be
processed. MG specifies the separation of the grid line on the memory axis. The defaults
are ML=0 MH=300100 and MG=100000. The units are in bytes. The parameters FL and
FH specify the low and high limits of the instruction count axis to be processed. FG

specifies the separation of the grid line on the memory axis. The defaults are FL=0

FH=20000000 and FG=1000000. DPI specified the approximate number of dots per inch
used by the output device. The default is 300. An specified the output page size.
The default is A4. The INCL parameter specifies the name of a file to be copied into
the postscript file. The default is psincl. This file allows annotations to be made in
the picture. The file cintcode/psincl was used to annotate the memory time graph
shown in Figure 4.2. This file contains lines such as:

F2 setfont
(SYN) 1.1 35 2 PDL
(TRN) 8.1 30 1.7 PUL
(CG) 15.3 36 2.1 PUR
(GET Stream) 0.45 270 1.7 PUL
...
(OCODE Buffer) 13.9 245 2 PDR
% 8.5 150 MVT (HELLO WORLD) SC
F3 setfont
(Self Compilation of the Cintcode BCPL Compiler) TITLE

The postscript macros PDL, PUL, PUR and PDR draw arrows with specified labels, byte
address, instruction count and arrow lengths. The arrow directions are respectively:
down left, Up left, up right and down right. The macro MVT moves to the specified
position in the graph and SC draws a string centered at that position. The TITLE macro
draws the graph title and F2 and F3 are fonts suitable for the labels and title. The
resulting postscript file can, of course, be further editied by hand.

raster COUNT,SCALE,TO/K,HELP/S CIN:y, POS:y, NAT:y

This command controls the collection of rastering information but only works when
the BCPL Cintcode system is running under the rastering interpreter rasterp. The
implementation uses sys(Sys setraster,...) calls that are described on page 58. If
raster is given an argument it activates the rastering mechanism. Once rastering is
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activated information will be written to a raster data file for the duration of the next
CLI command. The format of this file is also outlined on page 58.

The COUNT argument allows the user to specify how many Cintcode instructions to
obey for each raster line. The default is 1000. The SCALE argument gives the raster
line granularity in bytes per pixel. The default being 12. The TO argument specifies
the name of the raster data file to be written. The default file name is RASTER.

If raster is called without any arguments, it closes the raster data file. The raster
data file can be processed and converted to Postscript using the rast2ps command
described below. Typical use of the raster command is following script:

raster count 1000 scale 12 to RASTER
bcpl com/bcpl.b to junk
raster
rast2ps fh 18000000 mh 301000

This will create the Postscript file RASTER.ps for the BCPL compiler compiling itself,
similar to that shown in Figure 4.2.

record TO,OFF/S CIN:n, POS:y, NAT:n
This command allows Cintpos console sessions to be recorded.

rename FROM/A,TO=AS/A/K CIN:y, POS:y, NAT:y
This will rename the file given by FROM to that specified by the AS argument.

repeat CIN:y, POS:y, NAT:y

run CIN:y, POS:y, NAT:y

send TASK,COUNT CIN:n, POS:y, NAT:n
This is part of the Cintpos bounce demonstration. It repeated sends a packet to

the specified task the specified number of times. The default task number is 7 and
the default count is 1000000. It can be used to measure the efficiency of inter-task
communication.

setflags CIN:y, POS:y, NAT:y

setlogname CIN:y, POS:y, NAT:y

shellcom CIN:y, POS:y, NAT:y

sial-386 CIN:y, POS:y, NAT:y

sial-alpha CIN:y, POS:y, NAT:y
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sial-sasm CIN:y, POS:y, NAT:y

sial-vax CIN:y, POS:y, NAT:y

skip DESTINATION-LABEL CIN:y, POS:y, NAT:y
The command skip label skips through the command stream until a line starting

with lab label is encountered. It then skips until the end of that line before resuming
normal command execution from there. The skip command is only allowed within
command-commands.

stack SIZE CIN:y, POS:y, NAT:y
The command stack n causes the size of the coroutine stack allocated for subse-

quent commands to be n words long. If called without an argument stack outputs the
current setting.

stats TO/K,PROFILE/S,ANALYSIS/S CIN:y, POS:y, NAT:y
This command controls the tallying facility which counts the execution of individual

Cintcode instructions. If no arguments are given, stats turns on tallying by clearing
the tally vector and causing tallying to be enabled for the next command to be executed.
Subsequent commands are not tallied, making it possible to process the tally vector
while it is in a static state. Typical usage of the stats command is illustrated below:

preload queens Preload the program to study
stats Enable stats gathering on next command
queens Execute the command to study

interpreter Select the fast interpreter (cintasm)
stats automatically selects the slow one

stats to STATS Send instruction frequencies to file
or

stats profile to PROFILE Send detailed profile info to file
or

stats analysis to ANALYSIS Generate statistical analysis to file

status CIN:y, POS:y, NAT:y

strtodat CIN:y, POS:y, NAT:y

syncdemo CIN:y, POS:y, NAT:y

taskid CIN:y, POS:y, NAT:y
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tbcpl CIN:y, POS:y, NAT:y

tcpaddr CIN:y, POS:y, NAT:y

tcpbench CIN:y, POS:y, NAT:y

tcpcli CIN:y, POS:y, NAT:y

tcpdump CIN:y, POS:y, NAT:y

tcprx CIN:y, POS:y, NAT:y

tcptest CIN:y, POS:y, NAT:y

tcptx CIN:y, POS:y, NAT:y

testtime CIN:y, POS:y, NAT:y

time CIN:y, POS:y, NAT:y

timeouts CIN:y, POS:y, NAT:y

tracebuf none CIN:y, POS:y, NAT:y
This command outputs the values pushed into the trace buffer by the trpush func-

tion. These are output in hex, eight values per line with the most recently pushed
value first. While tracebuf is running insertion of new values into the buffer is dis-
ables. Trace buffer values often represent events and can assist the debugging of subtle
(often real time) programming errors.

The rootnode has a field trbuf that points to the trace buffer provided the rootnode
field trword is set to #xBFBFBFBF. Settinf trword to any other value disable the trpush
function. If buf is the trace buffer, buf!0 is its upper bound (typically 1001) and buf!1

is the position, between 2 and buf!0, of where the next value will be pushed. As a
safety check this location will hold the value #xBFBFBFBF. Values can be pushed into
the trace buffer from anywhere in the system, and in Cintpos this can be within the
kernel and even within the interrupt service routine or device drivers.
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type FROM/A,TO,N/S CIN:y, POS:y, NAT:y
This command will output the file given by the FROM argument, sending it to the

screen unless the TO argument is given. The swirch argument N causes line numbers to
be added.

typeflush CIN:y, POS:y, NAT:y

typehex FROM/A,TO/K CIN:y, POS:y, NAT:y
This will convert the file specified by FROM in hexadecimal and send the result to

the TO file if this argument is given.

unhold CIN:y, POS:y, NAT:y

unpreload CIN:y, POS:y, NAT:y
This command will remove preloaded commands from the Cintcode memory. The

ALL switch will cause all preloaded commands to be removed.

vecstats CIN:y, POS:y, NAT:y

wait CIN:y, POS:y, NAT:y

why CIN:y, POS:y, NAT:y

x8-bin CIN:y, POS:y, NAT:y

4.4 cli.b and cli init.b

The Command Language Interpreter is a simple program implemented in BCPL whose
source code can be found in the files sysb/cli.b and sysb/cli init.b. This section
mainly describes the Cintpos version. The CLI is the first program the interacts with
after starting the system. Under Cintpos it runs as task one (named Root Cli). It
uses variables in the global vector to hold its state during command execution. These
variables have reserved global numbers typically in the range 133 to 149. They are
declared in g/clihdr.b. Since running commands use the same global vector they can
access (and even modify) these variables – a feature that is both dangerous and useful.
Commands such as run and c rely on this feature. The CLI global variables are as
follows.
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cli init CIN:y, POS:y, NAT:y
This holds the function used to initialise the CLI, and depends on which context

the CLI is to run in. It is called when the CLI is first entered using the following code.

{ LET f = cli_init(parm.pkt)
IF f DO f(result2) // Must get result2 after calling cli_init

}

As can be seen cli init must either return zero or a function that can be applied
to result2. The function is typically deletetask or unloadseg with result2 being
suitably set.

cli returncode, cli result2 CIN:y, POS:y, NAT:y
These hold the return code and the value of result2 of the most recently executed

command.

cli faillevel CIN:y, POS:y, NAT:y

cli data CIN:y, POS:y, NAT:y
This holds CLI data dependant on the context in which the CLI is running.

cli commanddir CIN:y, POS:y, NAT:y

cli prompt CIN:y, POS:y, NAT:y
This variable holds the current prompt string. It should be a writef format string

since it used in the Cintpos CLI as follows:

writef(cli_prompt, taskid, mins/60, mins REM 60, secs)

where hours, mins and secs correspond to the current time of day. On single threaded
BCPL systems the corresponding call is:

{ writef(cli_prompt, msecs)

where msecs is the real time of execution of the latest command.

cli currentinput, cli currentoutput, cli standardinput, cli standardoutput
CIN:y, POS:y, NAT:y

The standard input and output streams are those that were setup when the CLI was
started. Sometimes a CLI will change its currently selected streams. For instance, while
executing a command-command the currently selected input will be from a tempory
file of commands. On reaching the end of file input will revert to the standard input.

cli commandfile CIN:y, POS:y, NAT:y
This is either zero or holds the name of temporary command file used in

command-commands.
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cli status CIN:y, POS:y, NAT:y
This holds a collection of bits specifying the context in which the CLI is running.

The mnemonics for these bits and their meanings are as follows.

clibit noprompt Do not output prompts even when not in a command-
command.

clibit eofdel Delete this task when EOF is received under Cintpos.
clibit comcom This CLI is currently in a command-command executing

commands from a temporary file.
clibit maincli This CLI is the task 1 CLI under Cintpos or the main CLI

under other systems.
clibit newcli This CLI was created by the newcli command under Cint-

pos.
clibit runcli This CLI was created by the run command under Cintpos.
clibit mbxcli This CLI was created by the mbxcli command under Cint-

pos.
clibit tcpcli This CLI was created by the tcpcli command under Cint-

pos.
clibit endcli The endcli command has been executed on this CLI under

Cintpos.

cli background CIN:y, POS:y, NAT:y
This is an obsolete variable that mainly controlled the generation of prompts. It is

to be superceded by the noprompt bit in cli status.

cli defaultstack CIN:y, POS:y, NAT:y
This holds the size of the coroutine stack that the CLI creates every time it runs a

command. Its value can be changed by the stack command.

cli commandname CIN:y, POS:y, NAT:y
This holds the name of the current command

cli module CIN:y, POS:y, NAT:y
This is either zero or the module of loaded code corresponding to the currently

execution command. It is used by the CLI to unload the command when it has finished
execution.
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Chapter 5

Console input and output

When cintsys or cintpos is started a stream is opened to recieve input from standard
input which is normally the keyboard and a second stream is opened to allow output
to standard output which is normally the screen. This combination of keyboard and
screen is called the console. The treatment of console streams depends on whether
cintsys or cintpos is being used.

5.1 Cintsys console streams

The stream control block for the keyboard stream is obtained by calling
findinput("**"). The stream is created the first time it is called. Subsequent calls
yield exactly the same stream control block. This stream has a buffer large enough to
hold 4096 characters. Characters are read from the keyboard using sardch which reads
and echoes each character to the screen. Exceptionally, ctrl-c (code 3) causes a SIGINT
interrupt, RUBOUT (code 127) is translated to backspace (code 8), ctrl-j, ctrl-m and
the ENTER (or RETURN) key all yield code 10 (the BCPL newline character) but
they all echo carriage return and linefeed to the screen.

Simple line editing of keyboard input is performed as follows. As characters are
typed they are normally transferred into the buffer, but if a backspace is received, the
latest character, is any, in the buffer is removed and its echoed symbol removed from
the screen. The contents of the buffer is not made available to the user until either a
newline character is received or the buffer becomes full.

A user can receive keyboard characters as soon as they are typed using calls of
sardch.

The stream control block for the screen stream is obtained by calling
findoutput("**"). The stream is created the first time it is called. Subsequent calls
yield exactly the same stream control block. This stream has a buffer large enough to
hold 4096 characters. Call of wrch places characters in this buffer, and when a newline
or newpage character is written, or the buffer becomes full, or a call of deplete is
made, the contents of the buffer is transmitted to the screen by calls of sawrch.

The program BCPL/bcplprogs/test/inputtst.b can be used to demonstate some
of the features of console input.
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5.2 Cintpos console streams

Under Cintpos interaction with the console is somewhat more complicated since Cintpos
can have several tasks all wishing to communicate with the keyboard and screen. This
interaction is controlled by a task called the Console Handler (typically task 3). Tasks
wishing to read from the keyboard or write to the screen must send request packets to
this task where they will be properly scheduled.

The call findinput("**") yields a new stream control block connected to the
keyboard. Initially it has no buffer. When the client task tries to read from this
stream, a read request packet is sent to the console handler which will in due course
return with a buffer of one or more characters or an indication that the keyboard stream
is exhausted. Keyboard read requests can be sent simultaneously from several tasks
and, indeed, a single task can send multiple requests. These are queued in the console
handler and processed on a first come first served basis.

The console handler obtains characters from the keyboard by sending ttyin request
packets to the keyboard device (typically device -2). This device returns keyboard
characters to the console handler as they are typed without echoing them to the screen.
It does no translation except that the characters ctrl-j, ctrl-m and the ENTER key all
yield code 10 (the BCPL newline character). Keyboard characters received by the
console handler are normally packed into an input buffer to form input lines. Simple
line editing is performed using the backspace key (code 8 or 127) which causes the most
recent character in the line buffer to be removed. When a newline is received or the
buffer is full or the escape sequence @e is typed, the line buffer is ready to send to the
currently selected task. Initially this is task 1 (the main CLI task) but can be changed
by the user using the escape mechanism described below. While a user is typing an
input line, it will appear on the screen and other screen output requests will be held
until the input line is complete. At any time if there is a completed input line for a
task that has sent a read request packet, it will be returned to the client with the line
buffer and number of characters in its two result fields. Lines that have not yet been
requested are queued as are read requests that are not yet satisfied. Note that a simple
way to temporally stop output to the screen is to type a character such as SPACE, and
then delete it later using backspace.

Cintpos console input has the following escape mechanism. All escape sequence
start with an at sign (@) and their effects are shown in the following table.
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Sequence Purpose

@A Set flag 1 in the currently selected task
@B Set flag 2 in the currently selected task
@C Set flag 3 in the currently selected task
@D Set flag 4 in the currently selected task
@E Send the current incomplete line to the currently selected

task
@F Throw away the current incomplete line and all outstanding

completed lines
@H Hold the currently selected task
@L Throw away the current incomplete line
@Sdd Set the currently selected task to task dd and allow output

from any task
@Tdd Set the currently selected task to task dd and only allow

output from task dd
@U Unhold the currently selected task
@Xhh Input the character with hex code hh
@Y Toggle message tagging. When tagging is enabled every line

of output identifies the originating task
@Z Toggle echo mode. When echoing is off subsequent charac-

ters are not echoed to the screen. This is useful for typing
passwords.

@ddd Input the character with octal code ddd
@@ Input @

5.2.1 Devices

The input and output device intentifiers may be inspected and changed by the following
call:

old_in_devid := sendpkt(notinuse, console_task, Action_devices,
?, ?,
new_in_devid,
new_out_devid)

old_out_devid := result2

The device identifiers are only changed if the new identifiers are non zero. This call
is used, for instance, by the record command to change replace the screen output
device with a task that forwards each character to the screen while recording timing
information. For details, see the programs com/record.b and com/recordtask.b
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5.2.2 Exclusive input

The console handler can be set to exclusive input mode by the call:

sendpkt(notinuse, console_task, Action_exclusiveinput,
?, ?,
TRUE)

While in exclusiveinput mode normal input line editing by the console handler is
suspended and client tasks have direct access to the keyboard input device on a first
come first served basis by the call:

ch := sendpkt(notinuse, console_task, Action_exclusiverdch,
?, ?)

Sending an exclusiveinput request with argument FALSE returns the console handler
to its normal line editing mode and causes all outstanding exclusiverdch requests to
return end-of-file characters (-1) to their client tasks.

5.2.3 Direct access to the screen and keyboard

Although it is not recommended, client task can send read (Action ttyin) and write
(Action ttyout) requests to keyboard and screen devices. These will be serviced in a
first come first served basis and since the console handler is making such requests you
can expect strange results.

Finally the functions sardch and sawrch provide direct access to the keyboard and
screen but are mainly only used for system debugging particularly when the console
handler is not running. Note that sawrch is the character output function used by
sawritef whose output may be merged with output from the console handler.

The following test programs can be used to demonstate some of the console handlers
features.

Cintcode/posprogs/test/inputtst.b
Cintcode/posprogs/test/sardchtst.b
Cintcode/posprogs/test/devrdchtst.b
Cintcode/posprogs/test/xintst.b
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The Debugger

When the Cintcode system starts up, control first passes to BOOT which initialises
the system and creates a running environment for the command language interpreter
(CLI). This is run by a recursive invocation of the interpreter and so when faults occur
control returns to BOOT which then enters an interactive debugger. This allows the
user to inspect the state of the registers and memory, and perform other debugging
operations on the faulted program. The debugger can also be entered using the abort

command, as follows:

560> abort

!! ABORT 99: User requested
*

The asterisk (*) is the debugger’s prompt character. A brief description of the available
debug commands can be display using the query (?) command.
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* ?
? Print list of debug commands
Gn Pn Rn Vn Variables
G P R V Pointers
n #b101 #o377 #x7FF ’c Constants
*e /e %e +e -e |e &e Dyadic operators
< > ! Postfixed operators
SGn SPn SRn SVn Store in variable
= Print current value
Tn Print n consecutive locations
$c Set print style C, D, F, B, O, S, U or X
LL LH Set Low and High store limits
I Print current instruction
N Print next instruction
Q Quit
B 0Bn eBn List, Unset or Set breakpoints
C Continue execution
X Equivalent to G4B9C
Z Equivalent to P1B9C
\ Execute one instruction
, Move down one stack frame
. Move to current coroutine
; Move to parent coroutine
[ Move to first coroutine
] Move to next coroutine
*

The debugger has a current value that can be loaded, modified and displayed. For
example:

* 12 Set the current value to 12
* -2 Subtract 2
* *3 Multiply by 3
* = 30 Display the current value
* < Shift left one place
* = 60 Display the current value
* 12 -2 *3 < = 60 Do it all on one line
*

Four areas of memory, namely: the global vector, the current stack frame, the Cint-
code register, and 10 scratch variables are easily accessed using the letters G, P, R, V,
respectively.

* 10sv1 11sv2 Put 10 and 11 in variables 1 and 2
* vt5 Display the first 5 variables

V 0: 0 10 11 0 0
*
* v1*50+v2= 511 A calculation using variables
* g0= 1000 Display global zero (globsize)
* g= 3615 Display the address of global zero
* ! = 1000 Indirect and display
* gt10 Display the first 10 globals

G 0: 1000 start stop sys clihook
G 5: GLOB 5 changec 6081 6081 52
*
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Notice that values that appear to be entry points display the first 7 characters of
the function’s name. Other display styles can be specified by the commands $C, $D, $F,
$B, $O, $S, $U or $X. These respectively display values as characters, decimal number,
in function style (the default), binary, octal, string, unsigned decimal and hexadecimal.

It is possible to display Cintcode instructions using the commands I and N. For
example:

* g4= clihook Get the entry to clihook
* n 3340: K4G 1 Call global 1, incremeting P by 4
* n 3342: RTN Return from the function
*

A breakpoint can be set at the first instruction of clihook and debugged program
re-entered by the following:

* g4= clihook Get the entry to clihook
* b9 Set break point 9
* c Resume execution
20>

The X command could have been used since it is a shorhand for G4B9C. The function
clihook is defined in BLIB and is called whenever a command is invoked. For example:

10> echo ABC Invoke the echo command

!! BPT 9: clihook Break point hit
A= 0 B= 0 3340: K4G 1

*

Notice that the values of the Cintcode registers A and B are displayed, followed by the
program counter PC and the Cintcode instruction at that point. Single step execution
is possible, for example:

* \A= 0 B= 0 24228: LLP 4
* \A= 6097 B= 0 24230: SP3
* \A= 6097 B= 0 24231: SP 89
* \A= 6097 B= 0 24233: L 80
* \A= 80 B= 6097 24235: SP 90
* \A= 80 B= 6097 24237: LLL 24272
* \A= 6068 B= 80 24239: LG 78
* \A= rdargs B= 6068 24241: K 85
* \A= 6068 B= 6068 5480: LP4
*

At this point the first instruction of rdargs is about to be executed. Its return address
is in P1, so a breakpoint can be set to catch the return, as follows:

* p1b8
* c

!! BPT 8: 24243
A= createc B= 1 24243: JNE0 24254

*
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A breakpoint can be set at the start of sys, as follows:

* g3b1 Set breakpoint 1
* b Display the currently set of breakpoints
1: sys
8: 24243
9: clihook
* 0b8 0b9 Unset breakpoints 8 and 9
* b Display the remaining breakpoint
1: sys
*

The next three calls of sys will be to write the characters ABC. The following example
steps through these and displays the state of the runtime stack just before the third
call, before leaving the debugger.

* c

!! BPT 1: sys
A= 11 B= 65 21188: SYS

* c
A
!! BPT 1: sys

A= 11 B= 66 21188: SYS
* c
B
!! BPT 1: sys

A= 11 B= 67 21188: SYS
* . 42844: Active coroutine clihook Size 20000 Hwm 127

43284: sys 11 67 312 43228
* , 43268: cnslwrf 37772
* , 43248: wrch 67 32
* , 43228: writes 42915 67
* , 42888: start 42904 42912 0 4407873
* , 42872: clihook 0
* , Base of stack
* 0b1c Clear breakpoint 1 and resume
C
210>

The following debugging commands allow the coroutine structure to be explored.

Command Effect

. Select current coroutine
, Display next stack frame
; Select parent coroutine
[ Select first coroutine
] Select next coroutine

Finally, the command Q causes a return from the Cintcode system.



Chapter 7

The design of OCODE

BCPL was designed to be a portable language with a compiler that is easily transferred
from machine to machine. To help to achieve this, the compiler is structured as shown
in figure 7.1 so that the codegenerator (CG), which is inherently machine dependent, is
separated from the rest of the compiler. The front end of the compiler performs syntax
analysis producing a parse tree (Tree) which is then translated by the translation phase
(TRN) to produce an intermediate form (OCODE) suitable for code generation.

LEX SYN Tree TRN OCODE CG Target
code

BCPL

Figure 7.1: The structure of the compiler

7.1 Representation of OCODE

Since OCODE is output by TRN to be read in by CG, there is little need for it to be
readable by humans and so is encoded as a sequence of integers which, in the current
Cintcode implementation the OCODE is buffered in memory, however the compiler can
be made to output a text version to file.

The numerical representation of OCODE can be transformed to the more readable
mnemonic form using the procode commands, described on page 83. As an example,
if the file test.b is the following:

GET "libhdr"

LET start() BE { LET a, b, c = 1, 0, -1
writef("Answer is %n*n", a+b+c)

}

then the command: bcpl test.b ocode test.ocd would write the following file:

85 2 94 1 5 115 116 97 114 116 95 3 42 1 42 0 42 -1 92 91 9 43
13 65 110 115 119 101 114 32 105 115 32 37 110 10 40 4 40 3 14
40 5 14 41 74 51 6 97 91 3 103 91 3 90 2 92 76 1 1 1

These numbers encode the OCODE statements in a natural way as can be verified
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by comparing them with the following more readable form of the same statements,
generated by the command: procode test.b.

JUMP L2
ENTRY L1 5 ’s’ ’t’ ’a’ ’r’ ’t’
SAVE 3 LN 1 LN 0 LN -1 STORE STACK 9
LSTR 13 ’A’ ’n’ ’s’ ’w’ ’e’ ’r’ ’ ’ ’i’ ’s’ ’ ’ ’%’ ’n’ 10
LP 4 LP 3 PLUS LP 5 PLUS LG 74 RTAP 6 RTRN STACK 3
ENDPROC STACK 3 LAB L2 STORE GLOBAL 1 1 L1

7.2 The OCODE Abstract Machine

OCODE was specifically designed for BCPL and is a compromise between the desire
for simplicity and the conflicting demands of efficiency and machine independence.
OCODE is an assembly language for an abstract stack based machine that has a global
vector and an area of memory for program and static data as shown in figure 7.2.

G
S

P

Li Lj

Memory for program and static data

Global vector Current stack frame

Figure 7.2: The BCPL abstract machine

The global vector is pointed to by the G pointer and the current stack frame is
pointed to by the P pointer. S is the size of the current stack frame, and so P!S is the
first free element of the stack. The value of S is always known during compilation and
so is not held in a register of the OCODE abstract machine machine. Any assignments
to S in the description of OCODE statements should be regarded as a specification of
S for the subsequent statement.

Static variables, tables and string constants are allocated space in the program
area and are referenced using labels such as L36 and L92. All global, local and static
variables are of the same size and, on most modern implementations, they hold 32 bit
values.

OCODE is normally encoded as a sequence of integers, but for human consumption
a more readable form is available. The command procode translates the numeric
OCODE into this mnemonic form. An OCODE statement consists of a function or
directive code possibly followed by operands that are either optionally signed integers,
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quoted characters or labels of the form Ln where n is a label number. The following
are examples of mnemonic OCODE statements:

LSTR 5 ’H’ ’e’ ’l’ ’l’ ’o’
LP 3
GETBYTE
SL L36

There are OCODE statements for loading and storing values, for applying expres-
sion operators, for procedure handling and flow of control. There are also directives for
the allocation of storage and to allow information to be passed to the codegenerator.

7.3 Loading and Storing values

A variables may be local, global or static, and may be accessed in three ways depending
on its context, and so there are 9 statements for accessing variables as shown in the
following table.

Statement Meaning

LP n P!S := P!n; S := S+1

LG n P!S := G!n; S := S+1

LL Ln P!S := Ln; S := S+1

LLP n P!S := @P!n; S := S+1

LLG n P!S := @G!n; S := S+1

LLL Ln P!S := @Ln; S := S+1

SP n P!n := P!S; S := S-1

SG n G!n := P!S; S := S-1

SL Ln Ln := P!S; S := S-1

The following tables shows the six statements for loading constants.

Statement Meaning

LF Ln P!S := entry point Ln; S := S+1

LN n P!S := n; S := S+1

TRUE P!S := TRUE; S := S+1

FALSE P!S := FALSE; S := S+1

QUERY P!S := ?; S := S+1

LSTR nC1 . . . Cn P!S := "C1 . . . Cn"; S := S+1

The statements TRUE and FALSE are present to improve portability between ma-
chines that use different representations for the integers. For instance, on machines
using ones complement or sign and modulus arithmetic, TRUE is not equivalent to LN

-1.
Indirect assignments and assignments to elements of word and byte arrays use the

statements STIND and PUTBYTE whose meanings are given in table 5.3.
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Statement Meaning

STIND !(P!(S-1)) := P!(S-2); S := S-2

PUTBYTE (P!(S-2))%(P!(S-1)) := P!(S-3); S := S-3

Assuming ptr is in global 200, the following assignments:

!ptr := 12; ptr!3 := 99; ptr%3 := 65

translate into the following OCODE:

LN 12 LG 200 STIND
LN 99 LG 200 LN 3 PLUS STIND
LN 65 LG 200 LN 3 PUTBYTE

7.4 Expression operators

The monadic expression operators only affect the topmost item of the stack and do not
change the value of S. They are shown in the next table.

Statement Meaning

RV P!(S-1) := ! P!(S-1)

ABS P!(S-1) := ABS P!(S-1)

NEG P!(S-1) := - P!(S-1)

NOT P!(S-1) := ∼ P!(S-1)

All dyadic expression operators take two operands from stack replacing them the
result and decrementing S by 1. These operators are shown in the following table.

Statement Meaning

GETBYTE P!(S-2) := P!(S-2) % P!(S-1)

MULT P!(S-2) := P!(S-2) * P!(S-1)

DIV P!(S-2) := P!(S-2) / P!(S-1)

REM P!(S-2) := P!(S-2) REM P!(S-1)

PLUS P!(S-2) := P!(S-2) + P!(S-1)

MINUS P!(S-2) := P!(S-2) - P!(S-1)

EQ P!(S-2) := P!(S-2) = P!(S-1)

NE P!(S-2) := P!(S-2) ∼= P!(S-1)

LS P!(S-2) := P!(S-2) < P!(S-1)

GR P!(S-2) := P!(S-2) > P!(S-1)

LE P!(S-2) := P!(S-2) <= P!(S-1)

GE P!(S-2) := P!(S-2) >= P!(S-1)

LSHIFT P!(S-2) := P!(S-2) << P!(S-1)

RSHIFT P!(S-2) := P!(S-2) >> P!(S-1)

LOGAND P!(S-2) := P!(S-2) & P!(S-1)

LOGOR P!(S-2) := P!(S-2) | P!(S-1)

EQV P!(S-2) := P!(S-2) EQV P!(S-1)

NEQV P!(S-2) := P!(S-2) NEQV P!(S-1)

Vector subscription (E1!E2 is implemented using plus and RV.
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7.5 Procedures

The design of the OCODE statements for procedure call, save and return have been de-
signed with care to allow code generators as much freedom as possible. The mechanism
allows some arguments to be passed in registers if this is required, and the distribution
of work between the code for a call and the code at the entry point of a procedure is up
to the implementer. In a typical program there are about five calls for each procedure
and so there is some incentive to keep the size of the call small by transferring some of
the work to the save sequence.

The compilation of a procedure definition generates an OCODE sequence of the
following form:

ENTRY Li n C1 . . . Cn

SAVE s

body of procedure
ENDPROC

Li is the label allocated for the procedure entry point. As a debugging aid, the
length of the procedure name is given by n and its characters by the C1. . . Cn. The
SAVE statement specifies the initial setting of S, which is just the save space size (=3)
plus the number of formal parameters. The state of the stack just after procedure entry
is shown in figure 7.3.

A1 A2 An

S
P

Save space Procedure arguments

Figure 7.3: The stack frame on procedure entry

The save space is used to hold the previous value of P, the return address and the
function entry address. Thus, the first argument of a function is always at position 3
relative to the P pointer. On some older versions of BCPL the size of the save space
was different.

The end of the procedure is marked by the ENDPROC statement which is non ex-
ecutable but allows the code generator to keep track of nested procedure definitions.
In early versions of OCODE, the first two arguments of ENTRY were interchanged and
ENDPROC was given a numerical argument.

The language insists that arguments are laid out in consecutive locations on the
stack and that there is no limit to their number. This suggests that a good strategy
is to place the values of procedure arguments in the locations they must occupy when
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the procedure is entered. Thus, a typical call E(E1, . . . , En) is compiled by first in-
crementing S to leave room for the save space in the new stack frame, then generate
code to evaluate the arguments E1, . . . , En before generating code for E. The state is
then as shown in figure 7.4. Finally, either FNAP k or RTAP k is generated, depending
on whether a function or routine call is being compiled. Notice that k is the distance
between the old and new stack frames.

E1 E2 En E

S
P

Old stack frame New stack frame

k

Figure 7.4: The moment of calling E(E1,E2,...En)

The return from a routine is performed by RTRN which restores the previous value
of P and resumes execution from the return address. The return from a function is
performed by FNRN just after the function result has been evaluated on the top of the
stack. FNRN performs the same action as RTRN, after placing the function result in a
special register (A) ready for FNAP to store it in the required location in the previous
stack frame.

7.6 Control

The statement LAB Ln set the value of label Ln to the current position in the OCODE
program. An unconditional transfer to this label can be performed by the satement
JUMP Ln. Conditional jumps inspect the value on the top of the stack P!(S-1). JT Ln

will make the jump if it is TRUE, and JF Ln will jump if FALSE. The translation of the
command GOTO E is the translation of E followed by the OCODE statement GOTO. It
thus takes the destination address from the top of the stack.

If the command RESULTIS E occurs in a context where the value of E is imme-
diately returned as the result of a function, it uses FNRN; but in other contexts, its
translation is code to evaluate E followed by a statement of the form RES Ln. This will
place the result in the special register (A) and jump to the label Ln, where a statement
of the form RSTACK k will be present to accept the value and place it in P!k while
setting S to k + 1.

The OCODE statement:

SWITCHON n LdK1L1 . . .KnLn

is used in the compilations of switches. It makes a jump determined by the value on
the top of the stack. Its first argument (n) is the number of cases in the switch and the
second argument (Ld) is the the default label. K1 to Kn are the case constants and L1

to Ln are the corresponding labels.
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The FINISH statement is the compilation of the BCPL FINISH command. It is
converted into code equivalent to stop(0) by the code generator.

7.7 Directives

Sometimes the size of the stack frame changes other than in the course of expression
evaluation. This happens, for instance, when control leaves a block in which local
variables were declared. The statement STACK s informs the code generator that the
size of the current stack frame is now s.

The STORE statement is used to inform the code generator that the point separating
the declarations and body of a block has been reached and that any anonymous results
on the stack are actually initialised local variables and so should be stored in their true
stack locations.

Static variables and tables are allocated space in the program area using statements
of the form ITEMN n, where n is the initial value of the static cell. The elements of
table are placed in consecutive locations by consective ITEMN statements. A label may
be set to the address of a static cell by preceding the ITEMN statement by a statement
of the form DATALAB Ln. In earlier versions of OCODE, there was an ITEML statement
used in the compilation of non global procedures and labels.

The SECTION and NEEDS directives in a BCPL program translate into SECTION and
NEEDS statements of the form:

SECTION nC1 . . . Cn NEEDS nC1 . . . Cn

where C1 to Cn are the characters of the SECTION or NEEDS name and n is the length.
The end of an OCODE module is marked by the GLOBAL statement which contains

information about global procedures and labels. The form of the GLOBAL statement is
as follows:

GLOBAL nK1L1 . . .KnLn

where n is the number of items in the global initialisation list. Ki is the global number
and Li is its label. When a module is loaded its global entry points must be initialised.

7.8 Discussion

A very early version of OCODE used a three address code in which the operands were
allowed to be the sum of up to three simple values with a possible indirection. The
intention was that reasonable code should be obtainable even when codegenerating
one statement at a time. It was soon found more convenient to use an intermediate
code that separates the accessing of values from the application of operators. This
improved portability by making it possible to implement very simple non optimising
codegenerators. Optimising codegenerators could absorb several OCODE statements
before emitting compiled code.
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The TRUE and FALSE statements were added in 1968 to improve portability to
machines using sign and modulus or one’s complement arithmetic. Luckily two’s com-
plement arithmetic has now become the norm. Other extension to OCODE, notably
the ABS, QUERY, GETBYTE and PUTBYTE statements were added as the corresponding
constructs appeared in the language.

In 1980, the BCPL changed slightly to permit position independent code to be
compiled. This change specified that non global labels and procedures were no longer
variables, and the current version of OCODE reflects this change by the introduction
of the LF statement and the removal of the old ITEML statement that used to allocate
static cells for such entry points.

Another minor change in this version of OCODE is the elimination of the ENDFOR

statement that was provided to fix a problem on 16-bit word addressed machines with
more than 64 Kbytes of memory.



Chapter 8

The Design of Cintcode

The original version of Cintcode was a byte stream interpretive code designed to be
both compact and capable of efficient interpretation on small 16 bit machines machines
based on 8 bit micro processors such as the Z80 and 6502. Versions that ran on the BBC
Microcomputer and under CP/M were marketed by RCP Ltd [2]. The current version
of Cintcode was extended for 32 bit implementations of BCPL and mainly differs from
the original by the provision of 32 bit operands and the removal of a size restriction of
the global vector.

There is now also a version of Cintcode for 64-bit implementations of BCPL. This is
almost identical to the 32-bit version. A nineth Cintcode register (MW) has been added.
This is normally zero but can be set by a new Cintcode instruction (MW), see below.
On 64-bit implementations, the instructions that take four byte immediate operands,
namely KW, LLPW, LW, LPW, SPW, APW, AW and MW, sign extend the four byte immediate
operand before adding the MW register into the senior half of the 64-bit result before
reseting the MW to zero. In this version static variable a allocated 64-bit 8 byte aligned
locations.

The Cintcode machine has nine registers as shown in figure 8.1.

B

C

P

G

ST

PC

Count

A

Stack frame Global vector Program area

Registers

MW

Figure 8.1: The Cintcode machine
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The registers A and B are used for expression evaluation, and C is used in in byte
subscription. P and G are pointers to the current stack frame and the global vector,
respectively. ST was intended as a status register but is currently not used, and PC

points to the first byte of the next Cintcode instruction to execute. Count is a register
used by the debugger. While it is positive, Count is decremented on each instruction
execution, raising an exception (code 3) on reaching zero. When negative it causes a
second (faster) interpreter to be used.

Cintcode encodes the most commonly occurring operations as single byte instruc-
tions, using multi-byte instructions for rarer operations. The first byte of an instruction
is the function code. Operands of size 1, 2 or 4 bytes imediately follow some function
bytes. The two instructions used to implement switches have inline data following the
function byte. Cintcode modules also contains static data for stings, integers, tables
and global initialisation data.

8.1 Designing for Compactness

To obtain a compact encoding, information theory suggests that each function code
should occur with approximately equal frequency. The self compilation of the BCPL
compiler, as shown in figure 4.2, was the main benchmark test used to generate fre-
quency information and a summary of how often various operations are used during this
test is given in table 8.1. This data was produced using the tallying feature controlled
by the stats command, described on page 87.

The statistics from different programs vary greatly, so while encoding the common
operations really compactly, there is graceful degradation for the rarer cases ensuring
that even unusual programs are handled reasonably well. There are, for instance,
several one byte instructions for loading small integers, while larger integers are handled
using 2, 3 and 5 byte instructions. The intention is that small changes in a source
program should cause small small changes in the size of the corresponding compiled
code.

Having several variant instructions for the same basic operation does not greatly
complicate the compiler. For example the four variants of the AP instruction that adds
a local variable into register A is dealt with by the following code fragment taken from
the codegenerator.

TEST 3<=n<=12 THEN gen(f_ap0 + n)
ELSE TEST 0<=n<=255

THEN genb(f_ap, n)
ELSE TEST 0<=n<=#xFFFF

THEN genh(f_aph, n)
ELSE genw(f_apw, n)

It is clear from table 8.1 that accessing variables and constants requires special
care, and that conditional jumps, addition, procedure calls and indirection are also
important. Since access to local variables accounts for about a quarter of the operations
performed, about this proportion of codes were allocated to instructions concerned with
local variables. Local variables are allocated words in the stack starting at position 3
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Operation Executions Static count

Loading a local variable 3777408 1479

Updating a local variable 1965885 1098

Loading a global variable 5041968 1759

Updating a global variable 796761 363

Using a positive constant 4083433 1603

Using a negative constant 160224 93

Conditional jumps (all) 2013013 488

Conditional jumps on zero 494282 267

Unconditional direct jump 254448 140

Unconditional indirect jumps 152646 93

Procedure calls 1324206 1065

Procedure returns 1324204 381

Binary chop switches 43748 12

Label vector switches 96461 17

Addition 2135696 574

Subtraction 254935 111

Other expression operations 596882 74

Loading a vector element 1356315 429

Updating a vector element 591268 137

Loading a byte vector element 476688 53

Updating a byte vector element 405808 29

Table 8.1: Counts from the BCPL self compilation test

relative to the P pointer and, as one would expect, small numbered locals are used
far more frequently than the others, so operations on low numbered locals often have
single byte codes.

Although not shown here, other statistics, such as the distribution of relative ad-
dressing offsets and operand values, influenced the design of Cintcode.

8.1.1 Global Variables

Global variables are referenced as frequently as locals and therefore have many function
codes to handle them. The size of the global vector in most programs is less than 512,
but Cintcode allows this to be as large are 65536 words. Each operation that refers to a
global variable is provided with three related instructions. For instance, the instructions
to load a global into register A are as follows:



112 CHAPTER 8. THE DESIGN OF CINTCODE

LG

LG1

LGH

b

h

B := A; A := G!(b+256)

B := A; A := G!b

B := A; A := G!h

b

Here, b and h are unsigned 8 and 16 bit values, respectively.

8.1.2 Composite Instructions

Compactness can be improved by combining commonly occurring pairs (and triples)
of operations into a single instructions. Many such composite instructions occur in
Cintcode; for instance, AP3 adds local 3 to the A register, and L1P6 will load v!1 into
register A, assuming v is held in local 6.

8.1.3 Relative Addressing

A relative addressing mechanism is used in conditional and uncoditional jumps and
the instructions: LL, LLL, SL and LF. Al these instructions refer to locations within the
code and are optimised for small relative distances. To simplify the codegenerator all
relative addressing instructions are 2 bytes in length. The first being the function code
and the second being an 8 bit relative address.

Direct

Indirect

J a

J$ b hh

x

PC x

PC

dest = q + hh

dest = x + a

q = (x & #xFFFFFFFE) + 2*b

Figure 8.2: The relative addressing mechanism

All relative addressing instructions have two forms: direct and indirect, depending
on the least significant bit of the function byte. The details of both relative address
calculations are shown in figure 8.2, using the instructions J and J$ as examples. For
the direct jump (J), the operand (a) is a signed byte in the range -128 to +127 which
is added to the address (x) of the operand byte to give the destination address (dest).
For the indirect jump, J$, the operand (b) is an unsigned byte in the range 0 to 255
which is doubled and added to the rounded version of x to give the address (q) of a
16 bit signed value hh which is added to q to give the destination address (dest).

The compiler places the resolving half word as late as possible to increase the chance
that it can be shared by other relative addressing instructions to the same desination,
as could happen when several ENDCASE statements occur in a large SWITCHON
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command. The use of a 16 bit resolving word places a slight restriction on the maximum
size of relative references. Any Cintcode module of less than 64K bytes will have no
problem.

8.2 The Cintcode Instruction Set

The resulting selection of function codes is shown in Table 8.2 and they are described
in the sections that follow. In the remaining sections of this chapter the following
conventions hold:

Symbol Meaning

n An integer encoded in the function byte.
Ln The one byte operand of a relative addressing instruction.
b An unsigned byte, range 0 ≤ b ≤ 255.
h An unsigned halfword, range 0 ≤ h ≤ 65535.
w A signed 32 bit word.

filler Optional filler byte to round up to a 16 bit boundary.
A The Cintcode A register.
B The Cintcode B register.
C The Cintcode C register.
P The Cintcode P register.
G The Cintcode G register.
PC The Cintcode PC register.

8.2.1 Byte Ordering and Alignment

A Cintcode module is a vector of 32 bit words containing the compiled code and static
data of a section of program. The first word of a module holds its size in words that
is used as a relative address to the end of the module where the global initialisation
data is placed. The last word of a module holds the highest referenced global number,
and working back, there are pairs of words giving the global number and relative entry
address of each global function or label defined in the module. A relative address of
zero marks the end of the initialisation data. See section 7.3 for more details.

The compiler can generate code for either a big- or little-endian machine. These
differ only in the byte ordering of bytes within words. For a little endian machine, the
first byte of a 32 bit word is at the least significant end, and on a big-endian machine, it
is the most significant byte. This affect the ordering of bytes in 2 and 4 byte immediate
operands, 2 byte relative address resolving words, 4 byte static quantities and global
initialisation data. Resolving words are aligned on 16 bit boundaries relative to the
start of the module, and 4 byte statics values are aligned on 32 bit boundaries. The 2
and 4 byte immediate operands are not aligned.

For efficiency reasons, the byte ordering is chosen to suit the machine on which the
code is to be interpreted. The compiler option OENDER causes the BCPL compiler to
compile code with the opposite endianess to that of the machine on which the compiler
is running, see the description of the bcpl command on page 75.
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0 32 64 96 128 160 192 224

0 - K LLP L LP SP AP A
1 - KH LLPH LH LPH SPH APH AH
2 BRK KW LLPW LW LPW SPW APW AW
3 K3 K3G K3G1 K3GH LP3 SP3 AP3 L0P3
4 K4 K4G K4G1 K4GH LP4 SP4 AP4 L0P4
5 K5 K5G K5G1 K5GH LP5 SP5 AP5 L0P5
6 K6 K6G K6G1 K6GH LP6 SP6 AP6 L0P6
7 K7 K7G K7G1 K7GH LP7 SP7 AP7 L0P7
8 K8 K8G K8G1 K8GH LP8 SP8 AP8 L0P8
9 K9 K9G K9G1 K9GH LP9 SP9 AP9 L0P9

10 K10 K10G K10G1 K10GH LP10 SP10 AP10 L0P10
11 K11 K11G K11G1 K11GH LP11 SP11 AP11 L0P11
12 LF S0G S0G1 S0GH LP12 SP12 AP12 L0P12
13 LF$ L0G L0G1 L0GH LP13 SP13 XPBYT S
14 LM L1G L1G1 L1GH LP14 SP14 LMH SH
15 LM1 L2G L2G1 L2GH LP15 SP15 BTC MDIV
16 L0 LG LG1 LGH LP16 SP16 NOP CHGCO
17 L1 SG SG1 SGH SYS S1 A1 NEG
18 L2 LLG LLG1 LLGH SWB S2 A2 NOT
19 L3 AG AG1 AGH SWL S3 A3 L1P3
20 L4 MUL ADD RV ST S4 A4 L1P4
21 L5 DIV SUB RV1 ST1 XCH A5 L1P5
22 L6 REM LSH RV2 ST2 GBYT RVP3 L1P6
23 L7 XOR RSH RV3 ST3 PBYT RVP4 L2P3
24 L8 SL AND RV4 STP3 ATC RVP5 L2P4
25 L9 SL$ OR RV5 STP4 ATB RVP6 L2P5
26 L10 LL LLL RV6 STP5 J RVP7 L3P3
27 FHOP LL$ LLL$ RTN GOTO J$ ST0P3 L3P4
28 JEQ JNE JLS JGR JLE JGE ST0P4 L4P3
29 JEQ$ JNE$ JLS$ JGR$ JLE$ JGE$ ST1P3 L4P4
30 JEQ0 JNE0 JLS0 JGR0 JLE0 JGE0 ST1P4 -
31 JEQ0$ JNE0$ JLS0$ JGR0$ JLE0$ JGE0$ MW -

Table 8.2: The Cintcode function codes
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8.2.2 Loading values

The following instructions are used to load constants, variables, the addresses of vari-
ables and function entry points. Notice that all loading instructions save the old value
of register A in B before updating A. This simplifies the translation of dyadic expression
operators.

Ln 0 ≤ n ≤ 10 B := A; A := n

LM1 B := A; A := -1
L b B := A; A := b

LH h B := A; A := h

LMH h B := A; A := -h
LW w B := A; A := w

These instructions load integer constants. Constants are in the range -1 to 10 are the
most common and have single byte instructions. The other cases use successively larger
instructions.

LPn 3 ≤ n ≤ 16 B := A; A := P!n
LP b B := A; A := P!b
LPH h B := A; A := P!h
LPW w B := A; A := P!w

These instructions load local variables and anonymous results addressed relative to P.
Offsets in the range 3 to 16 are the most common and use single byte instructions. The
other cases use succesively larger instructions.

LG b B := A; A := G!b
LG1 b B := A; A := G!(b + 256)
LGH h B := A; A := G!h

LG loads the value of a global variables in the range 0 to 255, LG1 load globals in the
range 256 to 511, and LGH can load globals up to 65535. Global numbers must be in
the range 0 to 65535.

LL Ln B := A; A := variable Ln

LL$ Ln B := A; A := variable Ln

LF Ln B := A; A := entry point Ln

LF$ Ln B := A; A := entry point Ln

LL loads the value of a static variable and LF loads the entry address of a function,
routine or label in the current module.

LLP b B := A; A := @P!b
LLPH h B := A; A := @P!h
LLPW w B := A; A := @P!w
LLG b B := A; A := @G!b
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LLG1 b B := A; A := @G!(b + 256)
LLGH h B := A; A := @G!h
LLL Ln B := A; A := @(variable Ln)
LLL$ Ln B := A; A := @(variable Ln)

These instructions load the BCPL ponters to local, global and static variables.

8.2.3 Indirect Load

GBYT A := B%A
RV A := A!0
RVn 1 ≤ n ≤ 6 A := A!n
RVPn 3 ≤ n ≤ 7 A := P!n!A
L0Pn 3 ≤ n ≤ 12 B := A; A := P!n!0
L1Pn 3 ≤ n ≤ 6 B := A; A := P!n!1
L2Pn 3 ≤ n ≤ 5 B := A; A := P!n!2
L3Pn 3 ≤ n ≤ 4 B := A; A := P!n!3
L4Pn 3 ≤ n ≤ 4 B := A; A := P!n!4
LnG b 0 ≤ n ≤ 2 B := A; A := G!b!n
LnG1 b 0 ≤ n ≤ 2 B := A; A := G!(b+256)!n
LnGH h 0 ≤ n ≤ 2 B := A; A := G!h!n

These instructions are used in the implementation of byte and word indirection oper-
ators % and ! in right hand contexts.

8.2.4 Expression Operators

NEQ A := -A
ABS A := ABS A
NOT A := ~A

These instructions implement the three monadic expression operators.

MUL A := B * A
DIV A := B / A
REM A := B REM A
ADD A := B + A
SUB A := B - A
LSH A := B << A
RSH A := B >> A
AND A := B & A
OR A := B | A
XOR A := B NEQV A
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These instructions provide for all the normal arithmetic and bit pattern dyadic opera-
tors. The instructions DIV and REM generate exception 5 if the divisor is zero. Evalua-
tion of relational operators in non conditional contexts involve conditional jumps and
the FHOP instruction, see page 120. Addition is the most frequently used arithmetic
operation and so there are various special instructions improve its efficiency.

An 1 ≤ n ≤ 5 A := A + n

Sn 1 ≤ n ≤ 4 A := A - n

A b A := A + b

AH h A := A + h

AW w A := A + w

S b A := A - b

SH h A := A - h

These instructions implement addition and subtraction by a constant integer amounts.
There are single byte instructions for incrementing by 1 to 5 and decremented by 1 to
4. For other values longer instructions are available.

APn 3 ≤ n ≤ 12 A := A + P!n
AP b A := A + P!b
APH h A := A + P!h
APW w A := A + P!w
AG b A := A + G!b
AG1 b A := A + G!(b+1)
AGH h A := A + G!b

These instructions allow local and global variables to be added to A. Special instructions
for addition by static variables are not provided, and subtraction by a variable is not
common enough to warrant special treatment.

8.2.5 Simple Assignment

SPn 3 ≤ n ≤ 16 P!n := A
SP b P!b := A
SPH h P!h := A
SPW w P!w := A
SG b G!b := A
SG1 b G!(b+256) := A
SGH h G!h := A
SL Ln variable Ln := A
SL$ Ln variable Ln := A

These instructions are used in the compilation of assignments to named local, global
and static variables. The SP instructions are also used to save anonymous results and
to layout function arguments.
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8.2.6 Indirect Assignment

PBYT B%A := C
XPBYT A%B := C
ST A!0 := B
STn 1 ≤ n ≤ 3 A!n := B
ST0Pn 3 ≤ n ≤ 4 P!n!0 := A
ST1Pn 3 ≤ n ≤ 4 P!n!1 := A
STPn 3 ≤ n ≤ 5 P!n!A := B
S0G b G!b!0 := A
S0G1 b G!(b+256)!0 := A
S0GH h G!h!0 := A

These instructions are used in assignments in which % or ! appear as the leading
operator on the left hand side.

8.2.7 Procedure calls

At the moment a function or routine is called the state of the stack is as shown in
figure 8.3. At the entry point of a function or routine the first argument, if any, will
be in register A and in memory P!3.

E2 En

P

Old stack frame New stack frame

k

Figure 8.3: The moment of calling E(E1,E2,...En)
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Kn 3 ≤ n ≤ 11
K b

KH h

KW w

These instructions call the function or routine whose entry point is in A and whose first
argument (if any) is in B. The new stack frame at position k relative to P where k is n,
b, h or w depending on which instruction is used. The effect of these instructions is as
follows:

P!k := P // Save the old P pointer
P := P+k // Set its new value
P!1 := PC // Save the return address
PC := A // Set PC to the entry point
P!2 := PC // Save it in the stack for debugging
A := B // Put the first argument in A
P!3 := A // Save it in the stack

As can be seen, three words of link information (the old P pointer, the return address
and entry address) are stored in the base of the new stack frame.

KnG b 3 ≤ n ≤ 11
KnG1 b 3 ≤ n ≤ 11
KnGH h 3 ≤ n ≤ 11

These instructions deal with the common situation where the entry point of the function
is in the global vector and the stack increment is in the range 3 to 11. The global number
gn is b, b + 256 or h depending on which function code is used and stack increment k
is n. The first argument (if any) is in A. The effect of these instructions is as follows:

P!k := P // Save the old P pointer
P := P+k // Set its new value
P!1 := PC // Save the return address
PC := G!gn // Set the new PC value from the global value
P!2 := PC // Save it in the stack for debugging
P!3 := A // Save the first argument in the stack

RTN

This instruction causes a return from the current function or routine using the previous
P pointer and the return address held in P!0 and P!1. The effect of the instruction is
as follows:

PC := P!1 // Set PC to the return address
P := P!0 // Restore the old P pointer

When returning from a function the result will be in A.
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8.2.8 Flow of Control and Relations

The following instructions are used in the compilation of conditional and unconditional
jumps, and relational expressions. The symbol rel denotes EQ, NE, LS, GR, LE or GE

indicating the relation being tested.

J Ln PC := Ln

J$ Ln PC := Ln

Jrel Ln IF B rel A DO PC := Ln

Jrel$ Ln IF B rel A DO PC := Ln

Jrel0 Ln IF A rel 0 DO PC := Ln

Jrel0$ Ln IF A rel 0 DO PC := Ln

The destinations of these jump instructions are computed using the relative addressing
mechanism described in section 8.1.3. Notice than when the comparison is with zero,
A holds the left operand of the relation.

GOTO PC := A

This instruction is only used in the compilation of the GOTO command.

FHOP A := 0; PC := PC+1

The FHOP instruction is only used in the compilation of relational expressions in non
conditional contexts as in the compilation. The assignment: x := y < z is typically
compiled as follows:

LP4 Load y
LP5 Load z
JLS 2 Jump to the LM1 instruction if y<z
FHOP A := FALSE; and hop over the LM1 instruction
LM1 A := TRUE
SP3 Store in x

8.2.9 Switch Instructions

The instructions are used to implement switches are SWL and SWB, switching on the
value held in A. They both assume that all case constants are in the range 0 to 65535,
with the compiler taking appropriate action when this constraint is not satisfied.

SWL filler n dlab L0 . . .Ln−1

This instruction is used when there are sufficient case constants all within a small
enough range. It performs the jump by selecting an element from a vector of 16 bit
resolving half words. The quantities n, dlab, and L0 to Ln−1 are 16 bit half words,
aligned on 16 bit boundaries by the option filler byte. If A is in the range 0 to n − 1 it
uses the appropriate resolving half word LA, otherwise it uses the resolving half word
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dlab to jump to the default label. See Section 8.1.3 for details on how resolving half
words are interpreted.

SWB filler n dlab K1 L1 . . .Kn Ln

This instruction is used when the range of case constants is too large for SWL to be
economical. It performs the jump using a binary chop strategy. The quantities n, dlab,
K1 to Kn and L1 to Ln are 16 bit half words aligned on 16 bit boundaries by the
option filler byte. This instruction successively tests A with the case constants in the
balanced binary tree given in the instruction. The tree is structured in a way similar
to that used in heapsort with the children of the node at position i at positions 2i and
2i + 1. References to nodes beyond n are treated as null pointers. Within this tree, Ki

is greater than all case constants in the tree rooted at position 2i, and less than those
in the tree at 2i + 1. The search starts at position 1 and continues until a matching
case constant is found or a null pointer is reached. If A is equal to some Ki then PC is
set using the resolving half word Li, otherwise it uses the resolving half word dlab to
jump to the default label. See Section 8.1.3 for details on how resolving half words are
interpreted.

The use of this structure is particularly good for the hand written machine code
interpreter for the Pentium where there are rather few central registers. Cunning use
can be made of the add with carry instruction (adcl). In the following fragment of
code, %esi points to n, %eax holds i and A is held in %eab. There is a test elsewhere
to ensure that A is in the range 0 to 65535.

swb1: cmpw (%esi,%eax,4),%bx ; { compare A with Ki
je swb3 ; Jump if A=Ki
adcl ; IF A>Ki THEN i := 2i

; ELSE i := 2i+1
cmpw (%esi),%ax ;
jle swb1 ; } REPEATWHILE i<=n

The compiler ensures that the tree always has at least 7 nodes allowing the code can
be further improved by preceeding this loop with two copies of:

cmpw (%esi,%eax,4),%bx ; compare Ki with A
je swb3 ; Jump if match found
adcl ; IF A>Ki THEN i := 2i

; ELSE i := 2i+1

The above code is a great improvement on any straightforward implementation of the
standard binary chop mechanism.

8.2.10 Miscellaneous

XCH Exchange A and B
ATB B := A
ATC C := A
BTC C := B
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These instructions are used move values between register A, B and C.

NOP

This instruction has no effect.

SYS

This instruction is used in body of the hand written library routine sys. If A is zero
then the interpreter returns with exception code P!4.

If A is -1 it set register count to P!4, setting A to the previous value of count.
Changing the value of count may change which of the two interpreters is used. For
more details see Section ??.

Otherwise, it performs a system operation returning the result in A. In the C im-
plementation of the interpreter this is done by the following code:

c = dosys(p, g);

MDIV

This instruction is used as the one and only instruction in the body of the hand written
library routine muldiv, see Section 3.3. It divides P!5 into the double length product of
P!3 and P!4 placing the result in A and the remainder in the global variable result2.
It then performs a function return (RTN). Its effect is as follows:

A := <the result>
G!Gn_result2 := <the remainder>
PC := P!1 // PC := P!1
P := P!0 // P := P!0

CHGCO

This instruction is used in the implementation of coroutines. It is the one and only
instruction in the body of the hand written library routine chgco. Its effect, which is
rather subtle, is as follows:

G!Gn_currco!0 := P!0 // !currco := !P
PC := P!1 // PC := P!1
G!Gn_currco := P!4 // currco := cptr
P := P!4!0 // P := !cptr

BRK

This instruction is used by the debugger in the implementation of break points. It
causes the interpreter to return with exception code 2.
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8.2.11 Undefined Instructions

These instructions have function codes 0, 1, 232, 254 and 255, and they each cause the
interpreter to return with exception code 1.

8.2.12 Corruption of B

To improve the efficiency of some hand written machine code interpreters, the following
instructions are permitted to corrupt the value held in B:

K KH KW Kn KnG KnG1 KnGH

SWL SWB MDIV CHGCO

All other instructions either set B explicitly or leave its value unchanged.

8.2.13 Exceptions

When an exception occurs, the interpreter saves the Cintcode registers in its register
vector and yields the exception number as result. For exceptions caused by non existent
instructions, BRK, DIV or REM the program counter is left pointing to the offending
instruction. For more details see the description of sys(1, regs) on page 54.
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Chapter 9

The Design of Sial

Sial is an internal intermediate assembly language designed for BCPL. The first version
was called Cial (Compact Internal Assembly Language) was pronounced “Seal”. It was
essentially an assembly language for Cintcode with the same function code mnemonics
and the same abstract machine registers. It was soon found that rather than having a
variety of codes to load an integer constant (such as L0, L1, L2, LM1, LW, LH or L), it was
better to have one function code to load positive integers and another for negative ones
with the values specified by operands. This form is more convenient for translation and
easier to compress. The new language is called Sial (also pronouced “seal”) with the S
standing for smaller. Sial therefore has fewer function codes than Cintcode and most
of them take operands but still uses the same abstract machine registers. Although
Cintcode load instructions save the value of the A register in B before setting A, Sial
loads typically do not.

Sial was designed as an experiment in the compact representation of algorithms
that can be easily just-in-time compiled into code for any target machine. Its sec-
ondary purpose was to allow an easy way to generate native code translations of BCPL
programs giving typically a five to ten fold speedup over the Cintcode interpretive ver-
sion. An experienced programmer can normally modify an existing naive Sial translator
to generate reasonable code for a new target in one or two days.

The following sections give a specification of Sial, outline the implementation of a
particular translator (sial-386) and finally outline how Sial can be compacted.

9.1 The Sial Specification

Sial consists of a stream of directives and instructions each starting with an opcode
followed by operands. Both opcodes and operands and encoded using integers each
prefixed by a letter specifying what kind of value it represents. The prefixes are as
follows:

125
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F An opcode or directive
P A stack offset, 0 to #xFFFFFF

G A global variable number, 0 to 65535
K A 24-bit unsigned constant, often small in value
W A 32-bit signed integer, used for static data and large constants
C A byte in range 0 to 255
L A label generated by translation phase
M A label generated by the Sial codegenerator

The instructions are for an abstract machine with internal registers

a The main accumulator, function first arg and result register
b The second accumulator used in dyadic operations
c Register used by pbyt and xpbyt, and possibly currupted by

some other instructions, such as mul, div, rem, xdiv and xrem

P Pointer to the base of the current stack frame
G Pointer to the base of the Global Vector
PC Set by jump and call instrunctions

The opcodes and directives are as follows:

Mnemonic Operand(s) Meaning

lp Pn a := P!n

lg Gn a := G!n

ll Ln a := !Ln

llp Pn a := @ P!n

llg Gn a := @ G!n

lll Ln a := @ !Ln

lf Ln a := byte address of entry point Ln

l Kn a := n

lm Kn a := - n

sp Pn P!n := a

sg Gn G!n := a

sl Ln !Ln := a

ap Pn a := a + P!n

ag Gn a := a + G!n

a Kn a := a + n

s Kn a := a - n
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lkp Kk Pn a := P!n!k

lkg Kk Gn a := G!n!k

rv a := ! a

rvp Pn a := P!n!a

rvk Kn a := a!k

st !a := b

stp Pn P!n!a := b

stk Kn a!n := b

stkp Kk Pn P!n!k := a

skg Kk Gn G!n!k := a

xst !b := a

k Pn Call a(b,...) incrementing P by n leaving b in a
kpg Pn Gg Call Gg(a,...) incrementing P by n
neg a := - a

not a := ~ a

abs a := ABS a

xdiv a := a / b; c := ?

xrem a := a REM b; c := ?

xsub a := a - b; c := ?

mul a := b * a; c := ?

div a := b / a; c := ?

rem a := b REM a; c := ?

add a := b + a

sub a := b - a

eq a := b = a

ne a := b ~= a

ls a := b < a

gr a := b > a

le a := b <= a

ge a := b >= a

eq0 a := a = 0

ne0 a := a ~= 0

ls0 a := a < 0

gr0 a := a > 0

le0 a := a <= 0

ge0 a := a >= 0
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lsh a := b << a

rsh a := b >> a

and a := b & a

or a := b a—
xor a := b XOR a

eqv a := b EQV a

gbyt a := b % a

xgbyt a := a % b

pbyt b % a := c

xpbyt a % b := c

swb Kn Ld K1 L1 ... Kn

Ln

Binary chop switch, Ld default

swl Kn Ld L1 ... Ln Label vector switch, Ld default

xch Swap a and b

atb b := a

atc c := a

bta a := b

btc c := b

atblp Pn b := a; a := P!n

atblg Gn b := a; a := G!n

atbl Kk b := a; a := k

j Ln Jump to Ln

rtn Procedure return
goto

ikp Kk Pn a := P!n + k; P!n := a

ikg Kk Gn a := G!n + k; G!n := a

ikl Kk Ln a := !Ln + k; !Ln := a

ip Pn a := P!n + a; P!n := a

ig Gn a := G!n + a; G!n := a

il Ln a := !Ln + a; !Ln := a

jeq Ln Jump to Ln if b = a

jne Ln Jump to Ln if b ~= a

jls Ln Jump to Ln if b < a

jgr Ln Jump to Ln if b > a

jle Ln Jump to Ln if b <= a

jge Ln Jump to Ln if b >= a

jeq0 Ln Jump to Ln if a = 0

jne0 Ln Jump to Ln if a ~= 0

jls0 Ln Jump to Ln if a < 0

jgr0 Ln Jump to Ln if a > 0

jle0 Ln Jump to Ln if a <= 0

jge0 Ln Jump to Ln if a >= 0

jge0m Mn Jump to Mn if a >= 0
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brk Breakpoint instruction
nop No operation
chgco Change coroutine
mdiv a := muldiv(P!3, P!4, P!5)

sys System function

section Kn C1 ... Cn Name of section
modstart Start of module
modend End of module
global Kn G1 L1 ... Gn Ln Global initialisation data
string Ml Kn C1 ... Cn String constant
const Mn Ww Large integer constant
static Ln Kk W1 ... Wk Static variable or table
mlab Mn Destination of jge0m
lab Lm Program label
lstr Mn a := Mn (pointer to string)
entry Kn C1 ... Cn Start of a function

The command bcpl2sial can be used to translate a BCPL program into Sial. For
example, it will compile the following program:

SECTION "fact"

GET "libhdr"

LET start() = VALOF
{ FOR i = 1 TO 5 DO writef("fact(%n) = %i4*n", i, fact(i))
RESULTIS 0

}

AND fact(n) = n=0 -> 1, n*fact(n-1)

into

F104
F103 K4 C102 C97 C99 C116
F113 K5 C115 C116 C97 C114 C116
F111 L1
F11 K1
F13 P3
F111 L4
F3 P3
F69
F9 L2
F31 P9
F13 P9
F3 P3
F13 P8
F112 M1
F32 P4 G94
F79 K1 P3
F75 K5
F89 L4
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F11 K0
F77
F107 M1 K15 C102 C97 C99 C116 C40 C37 C110
C41 C32 C61 C32 C37 C105 C52 C10

F113 K4 C102 C97 C99 C116
F111 L2
F92 L5
F11 K1
F77
F111 L5
F12 K1
F16 P3
F69
F9 L2
F31 P4
F73 P3
F39
F77
F106 K1 G1 L1 G94
F105

This can be converted in the following more readable for using the sial-sasm command:

MODSTART
SECTION K4 C102 C97 C99 C116

//Entry to: start
ENTRY K5 C115 C116 C97 C114 C116
LAB L1
L K1
SP P3
LAB L4
LP P3
ATB
LF L2
K P9
SP P9
LP P3
SP P8
LSTR M1
KPG P4 G94
IKP K1 P3
ATBL K5
JLE L4
L K0
RTN
STRING M1 K15 C102 C97 C99 C116 C40 C37 C110 C41 C32 C61 C32 C37 C105 C52 C10

//Entry to: fact
ENTRY K4 C102 C97 C99 C116
LAB L2
JNE0 L5
L K1
RTN
LAB L5
LM K1
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AP P3
ATB
LF L2
K P4
ATBLP P3
MUL
RTN
GLOBAL K1
G1 L1
G94
MODEND

9.2 The sial-386 Translator

The source of an Sial translator that generates Intel 386 assembly language is
com/sial-386.b. It is a simple program about 750 lines in length based on the
sial-sasm program. It causes the readable version of the Sial source to appear as
comments interspersed with the corresponding Intel 386 translations. For the example,
program given above it outputs the following assembly language.

# Code generated by sial-386

.text

.align 16
# MODSTART
# SECTION K4 C102 C97 C99 C116

# Entry to: start
# ENTRY K5 C115 C116 C97 C114 C116
# LAB L1

LA1:
movl %ebp,0(%edx)
movl %edx,%ebp
popl %edx
movl %edx,4(%ebp)
movl %eax,8(%ebp)
movl %ebx,12(%ebp)
# L K1
movl $1,%ebx
# SP P3
movl %ebx,12(%ebp)
# LAB L4
LA4:
# LP P3
movl 12(%ebp),%ebx
# ATB
movl %ebx,%ecx
# LF L2
leal LA2,%ebx
# K P9
movl %ebx,%eax
movl %ecx,%ebx
leal 36(%ebp),%edx
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call *%eax
# SP P9
movl %ebx,36(%ebp)

# LP P3
movl 12(%ebp),%ebx

# SP P8
movl %ebx,32(%ebp)

# LSTR M1
leal MA1,%ebx
shrl $2,%ebx

# KPG P4 G94
movl 376(%esi),%eax
leal 16(%ebp),%edx
call *%eax

# IKP K1 P3
movl 12(%ebp),%ebx
incl %ebx
movl %ebx,12(%ebp)

# ATBL K5
movl %ebx,%ecx
movl $5,%ebx

# JLE L4
cmpl %ebx,%ecx
jle LA4

# L K0
xorl %ebx,%ebx

# RTN
movl 4(%ebp),%eax
movl 0(%ebp),%ebp
jmp *%eax

# STRING M1 K15 C102 C97 C99 C116 C40 C37 C110 C41 C32 C61 C32 C37 C105 C52 C10
.data
.align 4

MA1:
.byte 15
.byte 102
.byte 97
.byte 99
.byte 116
.byte 40
.byte 37
.byte 110
.byte 41
.byte 32
.byte 61
.byte 32
.byte 37
.byte 105
.byte 52
.byte 10
.text

# Entry to: fact
# ENTRY K4 C102 C97 C99 C116
# LAB L2
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LA2:
movl %ebp,0(%edx)
movl %edx,%ebp
popl %edx
movl %edx,4(%ebp)
movl %eax,8(%ebp)
movl %ebx,12(%ebp)
# JNE0 L5
orl %ebx,%ebx
jne LA5
# L K1
movl $1,%ebx
# RTN
movl 4(%ebp),%eax
movl 0(%ebp),%ebp
jmp *%eax
# LAB L5
LA5:
# LM K1
movl $-1,%ebx
# AP P3
addl 12(%ebp),%ebx
# ATB
movl %ebx,%ecx
# LF L2
leal LA2,%ebx
# K P4
movl %ebx,%eax
movl %ecx,%ebx
leal 16(%ebp),%edx
call *%eax
# ATBLP P3
movl %ebx,%ecx
movl 12(%ebp),%ebx
# MUL
movl %ecx,%eax
imul %ebx
movl %eax,%ebx
# RTN
movl 4(%ebp),%eax
movl 0(%ebp),%ebp
jmp *%eax
# GLOBAL K1

.globl fact

.globl _fact
fact:
_fact:
movl 4(%esp),%eax
# G1 L1
movl $LA1,4(%eax)
# G94
ret

# MODEND
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When implementing sial-386 it was necessary to decide how the Intel registers
were to be used and what the BCPL calling sequence should be. The chosen register
allocation was as follows:

Intel register Use

%eax A work register
%ebx The A register
%ecx The B register
%edx The C register
%esi The G pointer
%edi A work register
%ebp The P pointer

The chosen BCPL calling sequence is as follows:

# Entry address must be in %eax
# The first argument must be in A(%ebx)

leal <stack increment>(%ebp),%edx # Set C(%edx) to the new P pointer
call *%eax # Subroutine jump to the entry point

The entry sequence is as follows:

# The first argument is in A(%ebx)
# The new P pointer is in C(%edx)

movl %ebp,0(%edx) # C!0 := P
movl %edx,%ebp # P := C
popl %edx # Get the return address
movl %edx,4(%ebp) # P!1 := return address
movl %eax,8(%ebp) # P!2 := entry address
movl %ebx,12(%ebp) # P!3 := the first argument

The return sequence is as follows:

# The result is in A(%ebx)
movl 4(%ebp),%eax # Get the return address
movl 0(%ebp),%ebp # P := the saved P pointer
jmp *%eax # Jump to the return address

The structure of sial-386 is simple. It mainly consists of a large switch within the
function scan that has a case for each function code and directive. For example, the
case for the function code kpg is as follows:

CASE f_kpg: cvfpg("KPG") // Call Gg(a,...) incrementing P by n
writef("*n movl %n(%%esi),%%eax", 4*gval)
writef("*n leal %n(%%ebp),%%edx", 4*pval)
writef("*n call **%%eax")
ENDCASE
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The call cvfpg(‘‘KPG’’) reads the Sial statement knowing it is of the form: KPG

Pk Gn). This outputs the statement as an assembly language comment after placing k
and n in pval and gval, respectively. The three writef calls then output the three
assembly language instructions for the KPG operation, and ENDCASE transfers control to
where the next Sial statement is processed. All the other cases are equally simple.

The section name of the program, which must be present, compiles into a C callable
function that initialises the BCPL global vector with the entry points defined in this
module. To complete the 386 implementation, there is a short handwritten assem-
bly language library natbcpl/sysasm/mlib.s that defines the BCPL callable func-
tions sys, changeco and muldiv. The program must be linked the compiled ver-
sions of the BCPL library modules BLIB and DLIB, and also clib whose source is
in natbcpl/sysc/clib.c and a program typically called initprob.c that defines
the function inisections to invoke all the global initialisation functions. The file
initprog.c is normally created by a call such as:

makeinit prog.b to initprog.c

The resulting initprog.c is typically:
// Initialisation file written by MakeInit version 1.8

#include "bcpl.h"

WORD stackupb=10000;
WORD gvecupb=1000;

// BCPL sections
extern BLIB(WORD *); // file (run-time library)
extern DLIB(WORD *); // file (system dependent library)
extern prog(WORD *); // file prog.b

void initsections(WORD *g) {
BLIB(g); // file (run-time library)
DLIB(g); // file (system dependent library)
prog(g); // file prog.b

return;
}

9.3 Compaction of Sial

To be written.
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Chapter 10

The MC Package

This chapter describes the MC package which provides a machine independent way
to generate and executing native machine code at runtime. The work on this
package started in January 2008 and is still under development, however, it cur-
rently works well enough to run the n-queens problem on i386 machines about
24 times faster than the normal Cintcode interpretive version. MC package de-
velopment is performed in the directory BCPL/bcplprogs/mc/ and fairly stable
versions are copied to BCPL/cintcode/g/mc.h, BCPL/cintcode/com/mci386.b and
BCPL/cintcode/cin/mci386 which can be used from any working directory.

The package is based on a simple machine independent abstract machine code
called MC which is easily translated into machine instructions for most architectures.
Although native code is generated by MC calls such as mcRDX(mc add, mc b, 20,

mc d), MC has a corresponding assembly language to assist debugging. The assembly
form of the instruction generated by the previous call is ADD B,20(D) meaning set
register B to the sum of B and the contents of the memory location whose address is 20
plus the value of register D. MC instructions are fairly low level and typically translate
into single native code instructions for most architectures. This example translates into
the i386 GNU statement: addl 20(%edx), %ebx.

The first operand is the destination for any instruction that updates a register or
memory location. Thus assignments are always from right to left as in most program-
ming languages but unlike many assembly codes where, for instance, movl 20(%edx),

%ebx updates the second operand.
The MC machine has six registers A, B, C, D, E and F that are directly available

to the programmer, and also a program counter, stack pointer, stack frame pointer and
a condition code register, although these cannot be accessed explicitly.

10.1 MC Example

The following program is a simple demonstration of the i386 version of the MC package.

GET "libhdr"
GET "mc.h"

137
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MANIFEST {
A=mc_a; B=mc_b; C=mc_c; D=mc_d; E=mc_e; F=mc_f
a1=1; a2; a3

}

LET start() = VALOF
{ // Load the dynamic code generation package for i386 machines.

LET mcseg, mcb, n = globin(loadseg("mci386")), 0, 0
UNLESS mcseg DO
{ writef("Trouble with MC package: mci386*n")

GOTO fin
}
// Create an MC instance for 10 functions with a data space
// of 100 words and code space of 4000 words.
mcb := mcInit(10, 100, 4000)
UNLESS mcb DO
{ writef("Unable to create an mci386 instance*n")

GOTO fin
}
mc := 0 // Currently no selected MC instance.
mcSelect(mcb) // Select the new MC instance.

mcK(mc_debug, #b0011) // Trace comments and MC instructions.

mcKKK(mc_entry, 1, 3, 5) // Entry point for function 1
// having 3 arguments and 5 local variables

mcK(mc_debug, #b1111) // Trace comments, MC instructions, target
// instructions and the compiled binary code.

mcRA(mc_mv, A, a1) // A := <arg 1>
mcRA(mc_add, A, a2) // A := A + <arg 2>

n := mcNextlab()
mcL(mc_lab, n) // Ln:
mcRA(mc_add, A, a3) // A := A + <arg 3>
mcR(mc_dec, A) // A := A - 1
mcRK(mc_cmp, A, 100)
mcJS(mc_jlt, n) // IF A<100 JMP Ln

mcK(mc_debug, #b0011) // Trace only comments and MC instructions.
mcF(mc_rtn) // Return from function 1 with result in A.
mcF(mc_endfn) // End of function 1 code.
mcF(mc_end) // End of dynamic code generation.

writef("*nF1(10, 20, 30) => %n*n", mcCall(1, 10, 20, 30))
fin:

IF mcseg DO unloadseg(mcseg)
RESULTIS 0

}

When this program runs it outputs the following.

// ENTRY 1 3 5
// DEBUG 15
// MV A,A1
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movl 20(%ebp), %eax
573: 8B 45 14

// ADD A,A2
addl 24(%ebp), %eax

576: 03 45 18

// LAB L1
lab L1

579: L1:
// ADD A,A3

addl 28(%ebp), %eax
579: 03 45 1C

// DEC A
decl %eax

582: 48
// CMP A,$100

cmpl $100, %eax
583: 83 F8 64

// JLT L1
jl L1

586: 7C F7
// DEBUG 3
// RTN
// ENDFN
// END

F1(10, 20, 30) => 117

The result of 117 (= 10+20+(30-1)*3) shows that the body of the loop was correctly
executed three times.

The header file (mc.h) defines manifests (such as mc mv and mc add) and globals
(such as mcK and mcRA) provided by the package. The package itself must be dynami-
cally loaded (by globin(loadseg("mci386"))) and then selected (by mcSelect(mcb)).
MC instructions are compiled by calls such as mcRA(op,... or mcRK(op,... where op

specifies the instruction or directive and the letters following mc (eg RA or RK) specify
the sort of operands supplied.

A register operand is denoted by R and an integer operand by K. There are 9 possible
kinds of memory operands denoted by A, V, G, M, L, D, DX, DXs and DXsB. A denotes an
specified argument of the current function, V denotes a specified local variable of the
current function, G denotes a specified BCPL global variable, M denotes a location in
Cintcode memory specified by a BCPL pointer, L denotes the position within the data
or code areas of the compiled code corresponding to a given label, D denotes a specified
absolute machine address, DX denotes a location whose machine address is the sum of
a given byte offset and register, DXs is similar to DX only the index register is scaled
by a given factor of 1, 2, 4 or 8 and finally DXsB is like DXs but has a second specified
register added into the effective address.

The following table summarises the MC code generation functions. The first ar-
gument is always specifies the directive or instruction and the remaining arguments
specify the operands. The destination of any instruction that updates a register or
memory location is always the first operand.
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Function Operands

mcF No operand
mcK One integer operand
mcR One MC register operand
mcA One operand specifying an argument number
mcV One operand specifying an local variable number
mcG One operand specifying a global variable number
mcM One operand giving the word address of a location

in Cintcode memory
mcL One numeric label operand, defaulting to 32-bit relative
mcD One operand giving an absolute machine address
mcDX One memory operand specified by an offset added to

an index register
mcDXs One memory operand specified by an offset added to

an index register scaled by s

which must be 1, 2, 4 or 8
mcDXsB One memory operand specified by an offset added to

a base register and an index register scaled by s

which must be 1, 2, 4 or 8
mcJS Jump instructions with near relative destinations
mcJL Jump instructions with possibly distant relative destinations
mcJR Jump instructions with destination given by resister
mcRA Two operands, R and A

mcRV Two operands, R and V

mcRG Two operands, R and G

mcRM Two operands, R and M

mcRL Two operands, R and L

mcRD Two operands, R and D

mcRDX Two operands, R and DX

mcRDXs Two operands, R and DXs

mcRDXsB Two operands, R and DXsB

mcRR Two operands, R and R

mcAR Two operands, A and R

mcVR Two operands, V and R

mcGR Two operands, G and R

mcMR Two operands, M and R

mcLR Two operands, L and R

mcDR Two operands, D and R

mcDXR Two operands, DX and R

mcDXsR Two operands, DXs and R

mcDXsBR Two operands, DXsB and R

mcRK Two operands, R and K

mcAK Two operands, A and K

mcVK Two operands, V and K

mcGK Two operands, G and K

mcMK Two operands, M and K

mcLK Two operands, L and K

mcDK Two operands, D and K

mcDXK Two operands, DX and K

mcDXsK Two operands, DXs and K

mcDXsBK Two operands, DXsB and K

mcKK Two integer operands
mcKKK Three integer operands
mcPRF One printf format string and one register
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10.2 MC Library Functions

mcb := mcInit(maxfno, dsize, csize)

Create an instance of the MC package, allocating space for maxfno functions, dsize
words of data space and csize words of code space. The MC control block is assigned
to mcb.

mcSelect(mcb)

Select an instance of the MC package by assigning mcb to the global variable mc.
For efficiency reasons, mcSelect copies various field in the control block to global
variables. If mc was non zero, the previous setting of the globals are saved in the
previously selected MC instance. It is thus important to set mc to zero before the first
call od mcSelect.

res := mcCall(fno, a1, a2, a3)

Call the function with number fno giving it the three arguments a1, a2, a3. The
result is assigned to res. Function fno must have been defined to expect three argu-
ments.

mcClose()

Close the currently selected MC instance deleting all its workspace and compiled
code. It also sets mc to zero.

mcPRF(mess, reg)

This function is an invaluable debugging aid which compiles code to call the C
function printf with the given format string (packed in the data area) and the value
of the specified register. All registers, including the condition code, are preserved. The
register argument may be omitted if the format string requires no register argument.
Typical use of mcPRF is as follows:

mcRK(mc_mv, D, #x01234567)
mcRK(mc_mv, A, #x89ABCDEF)
mcRK(mc_mv, A, #x10000000)
mcPRF("With D=%8x ", D)
mcPRF("A=%8x ", A)
mcPRF("B=%8x*n", B)
mcR(mc_div, B)
mcPRF("the instruction: DIV B*n")
mcPRF("gives D=%8x ", D)
mcPRF("A=%8x ", A)
mcPRF("B=%8x*n", B)

This causes the following output:

With D= 1234567 A=89abcdef B=10000000
the instruction: DIV B
gives D= 9abcdef A=12345678 B=10000000
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n := mcNextlab()

Allocate the next available label assigning its number to n. Labels are use by
instructions that refer to static data and in jump instructions. There is essentially no
limit to the number of labels that may be allocated.

mcComment(format, a, b,..., k)

This is a debugging aid to make the compiled code more readable using writef to
write a message to the listing output during code generation if the least significant bit
of mcDebug is a one. The variable mcDebug is set by the DEBUG directive described
below.

res := mcDatap()

res := mcCodep()

These calls return the current positions in the data and code area respectively.

All the other functions compile MC directives and instructions and are described
below.

10.3 The MC Language

The MC abstract machine language is fairly low level and is somewhat influenced by
the i386 architecture. Particularly the rather small number of MC registers allowed, the
rich variety of memory addressing modes and the specification of the instructions for
multiplication, division and shifts. However, it is machine independent and reasonably
easy to compile into native machine code for most machines. Before describing the
MC instructions, a few key features will be introduced. As mentioned earlier the
MC machine has six registers named A to F which are typically mapped directly onto
machine registers of the target architecture. These can be used for any purpose except
for a few instructions such as MUL, DIV and the shifts which may implicitly use some of
them implicitly.

When an MC function is declared it has a specified number of arguments and local
variables (see the ENTRY statement below). When a function is called by the CALL
instruction, the required number of arguments must have already been pushed onto the
stack. On return these arguments will have been automatically popped from the stack.
If the wrong number of arguments are given, the effect is undefined. By convention,
the result of a function is returned in register A.

Numeric labels are used to refer to static data and positions in the code. They
are allocated by calls of mcNextlab, described above. Many architectures allow both
conditional and unconditional jumps to use short offsets (typically single bytes) to
specify the relative address of the destination. Jump instructions automatically use
short relative addresses for backward jumps if possible, but, for forward jumps, the
programmer is required to give a hint. Jump instructions compiled by mcJS expect
forward jumps to use short relative addresses while mcJL specifies that larger relative
addresses are to be used. If a short relative address proves insufficent and error message
is generated telling the programmer that mcJL should have been used. The function
mcJR is used when the destination address of a jump instruction is in a register.
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Conditional jump instructions inspect the condition code to determine whether or
not to jump. The condition code is set by the CMP, ADD, ADDC, SUB and SUBC instructions
and preserved by jump instructions (JMP and Jcc). All other instructions (including
INC and DEC leave the condition code undefined.

All MC directives and instructions are described below in alphabetical order. The
name of the operation is given in bold caplital letters together with the list of possible
operand types. The BCPL manifest for the operation consists of the name in lower
case letters preceeded by mc . For example, mc add is the manifest constant for the
ADD operation, and since RDXs appears in its list of operand types, it can be compiled
by, for instance, mcRDXs(mc add, mc a, 20, mc d, 4).

ADD RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Add the second operand into the first and set the condition code appropriately. For
example, mcRG(mc add, mc d, 150) will compile code to add global 150 in register D.

ADDC RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Add the condition code carry bit and the second operand into the first and set the
condition code appropriately. Adding 1 into the 64-bit value held in B:A can be done
by the code generated by:

mcRK( mc_add, mc_a, 1) // Don’t use INC here!
mcRK( mc_addc, mc_b, 0)

ALIGNC K

Align the next instruction to an address which is a multiple of k which must be 2,
4 or 8.

ALIGND K

Align the next item of data to an address which is a multiple of k which must be
2, 4 or 8.

AND RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Perform the bit wise AND of the second operand into the first.

CALL KK

Call the function who number is the first argument with n arguments that have
already been pushed onto the stack when n is the second operand. On return these
arguments will have been popped and, by convention, the result will be in register A.

CDQ F

Sign extend register A into D. That is, if A is positive set D to zero, otherwise it is
to #xFFFFFFFF. This is normally used in conjuction with DIV.
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CMP RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Set the condition code to difference between the first operand and the second. The
condition code is used by conditional jumps and conditional setting instructions. For
example,

mcRK(mc_cmp, mc_b, 100)
mcJL(mc_jle, 25)

will compile code to jump the label L25 is B<=100, using signed arithmetic.

DATAB K

Assemble one byte of data with the specified value.

DATAK K

Assemble one aligned word of data with the specified value.

DATAL L

Assemble one aligned word of data initialised with the absolute address of code or
data specified by the given label.

DEBUG K

Set the debug tracing level (mcDebug) to the specified value. The least significant
four bits of mcDebug control the level of tracing as follows.

#b0001 Output any mcComment comments.
#b0010 Output the MC instructions.
#b0100 Output the target machine instructions.
#b1000 Output the compiled binary code.

DEC R A V G M L D DX DXs DXsB

Decrement the specified register or memory word by 1, leaving the condition code
undefined.

DIV K R A V G M L D DX DXs DXsB

Divide the double length value in D:A by the specified operand. The result is left
in A and the remainder in D. The DIV instruction performs signed arithmetic.

DLAB L

Set the specified label to the absolute address of the next available byte in the data
area.

ENDFN F

This marks the end of the body of the current function.

END F

This directive specifies that no more code generation will be done. The system
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will free all temporary work space only preseving the MC control block, the function
dispatch table, and the data and code areas.

ENTRY KKK

This specifies the entry point of the function whose number is given by the first
operand. The second operand specifies how many arguments the function takes and the
third specified how many local variables the function may use. Calls to this function
must have the required number of arguments pushed onto the stack, and on return
this number of values will be automatically popped from the stack. Functions called
directly from BCPL using mcCall always take three arguments, but functions called
using the CALL instruction can take any number of arguments.

INC R A V G M L D DX DXs DXsB

Increment the specified register or word of memory by one, leaving the condition
code undefined.

JEQ JS JL JR

Jump to the specified location if the first operand of a previous CMP instruction was
equal to its second operand.

JGE JS JL JR

Jump to the specified location if the first operand of a previous CMP instruction was
greater than or equal to its second operand using signed arithmetic.

JGT JS JL JR

Jump to the specified location if the first operand of a previous CMP instruction was
greater than its second operand using signed arithemetic.

JLE JS JL JR

Jump to the specified location if the first operand of a previous CMP instruction was
less than or equal to its second operand using signed arithmetic.

JLT JS JL JR

Jump to the specified location if the first operand of a previous CMP instruction was
less than its second operand using signed arithmetic.

JMP JS JL JR

Unconditionally jump to the specified location.

JNE JS JL JR

Jump to the specified location if the first operand of a previous CMP instruction was
not equal to its second operand.

LAB L

Set the specified label to the machine address of the current position in the code
area.
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MV RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Move the second operand into the first.

MVB AR VR GR MR LR DR DXR DXsR DXsBR

AK VK GK MK LK DK DXK DXsK DXsBK

Move the least significant byte of the second operand into the memory byte location
specified by the first.

MVH AR VR GR MR LR DR DXR DXsR DXsBR

AK VK GK MK LK DK DXK DXsK DXsBK

Move the least significant 16 bits of the second operand into the 16-bit memory
location specified by the first.

MVSXB RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Move the sign extended byte value specified by the second operand into the first.

MVSXH RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Move the sign extended 16-bit value specified by the second operand into the first.

MVZXB RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Move the zero extended byte value specified by the second operand into the first.

MVZXH RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Move the zero extended 16-bit value specified by the second operand into the first.

LEA RA RV RG RM RL RD RDX RDXs RDXsB

Load the register specified by the first operand with the absolute address of the
memory location specified by the second operand.

LSH RK RR

Shift to the left the value in the register specified by the first operand by the
amount specified by the second operand. If the second operand is a register is must be
C. Vacated positions are filled with zeros. The effect is undefined if the shift distance
is not in the range 0 to 31.

MUL K R A V G M L D DX DXs DXsB

Multiply register A by the operand placing the double length result in D:A. Signed
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arithmetic is used. Unsigned arithmetic is used. Immediate (K) operands may some-
times be packed in the data area.

NEG R A V G M L D DX DXs DXsB

Negate the value specified by the operand.

NOP F

Performs no operation.

NOT R A V G M L D DX DXs DXsB

Perform the bitwise complement of the value specified by the operand.

OR RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Perform the bitwise OR of the second operand into the first.

POP R A V G M L D DX DXs DXsB

Pop one word off the stack placing it in the specified register or memory location.

PUSH K R A V G M L D DX DXs DXsB

Push the specified constant, register or memory location onto the stack.

RSH RR RK

Shift to the right the value in the register specified by the first operand by the amount
specified by the second operand. If the second operand is a register is must be C.
Vacated positions are filled with zeros. The effect is undefined if the shift distance is
not in the range 0 to 31.

RTN F

This causes a return from the current function. The result, if any, should be in A.

SEQ R

Set the specified register to one if the first operand of a previous CMP instruction
was equal to its second operand, otherwise set it to zero.

SGE R

Set the specified register to one if the first operand of a previous CMP instruction
was greater than or equal to its second operand using signed arithmetic, otherwise set
it to zero.

SGT R

Set the specified register to one if the first operand of a previous CMP instruction
was greater than its second operand using signed arithmetic, otherwise set it to zero.

SLE R

Set the specified register to one if the first operand of a previous CMP instruction
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was less than or equal to its second operand using signed arithmetic, otherwise set it
to zero.

SLT R

Set the specified register to one if the first operand of a previous CMP instruction
was less than its second operand using signed arithmetic, otherwise set it to zero.

SNE R

Set the specified register to one if the first operand of a previous CMP instruction
was not equal to its second operand, otherwise set it to zero.

SUB RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Subtract the second operand from the first, and set the condition code appropri-
ately.

SUBC RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Subtract the condition code carry bit and the second operand from the first, and
set the condition code appropriately. Subtracting 1 from the 64-bit value held in B:A

can be done by the code generated by:

mcRK( mc_sub, mc_a, 1) // Don’t use DEC here!!
mcRK( mc_subc, mc_b, 0)

UDIV K R A V G M L D DX DXs DXsB

Divide the double length value in D:A by the specified operand. The result is left
in A and the remainder in D. The UDIV instruction performs unsigned arithmetic.

UJGE JS JL JR

Jump to the specified location if the first operand of a previous CMP instruction was
greater than or equal to its second operand using unsigned arithmetic.

UJGT JS JL JR

Jump to the specified location if the first operand of a previous CMP instruction was
greater than its second operand using unsigned arithmetic.

UJLE JS JL JR

Jump to the specified location if the first operand of a previous CMP instruction was
less than or equal to its second operand using unsigned arithmetic.

UJLT JS JL JR

Jump to the specified location if the first operand of a previous CMP instruction was
less than its second operand using unsigned arithmetic.
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UMUL K R A V G M L D DX DXs DXsB

Multiply register A by the operand placing the double length result in D:A. Unsigned
arithmetic is used. Immediate (K) operands may sometimes be packed in the data area.

USGE R

Set the specified register to one if the first operand of a previous CMP instruction
was greater than or equal to its second operand using unsigned arithmetic, otherwise
set it to zero.

USGT R

Set the specified register or memory word to one if the first operand of a previous CMP
instruction was greater than its second operand using unsigned arithmetic, otherwise
set it to zero.

USLE R

Set the specified register to one if the first operand of a previous CMP instruction
was less than or equal to its second operand using unsigned arithmetic, otherwise set
it to zero.

USLT R

Set the specified register to one if the first operand of a previous CMP instruction
was less than its second operand using unsigned arithmetic, otherwise set it to zero.

XCHG RR RA RV RG RM RL RD RDX RDXs RDXsB

Exchange the values specified by the two operands.

XOR RA RV RG RM RL RD RDX RDXs RDXsB

RR AR VR GR MR LR DR DXR DXsR DXsBR

RK AK VK GK MK LK DK DXK DXsK DXsBK

Exclusive OR the second operand into the first.

10.4 MC Debugging Aids

The primary debugging aid is to inspect the generated code and the is controlled by
the DEBUG directive which sets the tracing level held in the global variable mcDebug.
Assuming bimc are the least significant four bit of mcDebug, if c = 1, print comments
compiled by mcComment. If m = 1, print MC instructions and directives. If i = 1, print
the corresponding target instruction(s) and if b = 1, print the resulting binary code in
hexadecimal. To fully understand this output it is, of course, necessary to have a good
understanding of the target architecture being used.

A second important debugging aid is provided by the mcPRF function which compiler
code to output the value of a specified register using a given printf format string. On
return all registers including the condition code are preserved. A typical call of mcPRF
is as follows.

mcPRF("The value of register A is %8x*n", mc_a)
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As an aid to debugging MC packages themselves, there is a test program called
bcplprogs/mc/mcsystest.b which systematically tests all MC instructions, directives
and addressing modes generating error messages for each error found. Each such error
message includes a test number which helps to locate the source of the of the problem.
If mcsystest is given a test number as argument, it provides a detailed compilation
trace of the specified test. This should provide sufficient information to locate the error
in the package.

10.5 The n-queens demonstration

This section shows how the algorithm to solve the n-queens problem as described in
Section 12.3 on page 160 can be reimplemented using the MC package. The MC version
of the program is as follows.

GET "libhdr"
GET "mc.h"

MANIFEST {
// Register mnemonics
ld = mc_a
row = mc_b
rd = mc_c
poss = mc_d
p = mc_e
count = mc_f

}

LET start() = VALOF
{ // Load the dynamic code generation package

LET mcseg = globin(loadseg("mci386"))
LET mcb = 0

UNLESS mcseg DO
{ writef("Trouble with MC package: mci386*n")

GOTO fin
}

// Create an MC instance for 20 functions with a data space
// of 100 words and code space of 4000
mcb := mcInit(20, 100, 40000)

UNLESS mcb DO
{ writef("Unable to create an mci386 instance*n")

GOTO fin
}

mc := 0 // Currently no selected MC instance
mcSelect(mcb)

mcK(mc_debug, dlevel)

FOR n = 1 TO 16 DO
{ mcComment("*n*n// Code for a %nx%n board*n", n, n)
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gencode(n) // Compile the code for an nxn board
}

mcF(mc_end)

writef("Code generation complete*n")

FOR n = 1 TO 16 DO
writef("Number of solutions to %i2-queens is %i9*n",

n, mcCall(n))

fin:
IF mc DO mcClose()
IF mcseg DO unloadseg(mcseg)

writef("*n*nEnd of run*n")
}

AND gencode(n) BE
{ LET all = (1<<n) - 1
mcKKK(mc_entry, n, 0, 0)

try(1, n, all)

mcRR(mc_mv, mc_a, count) // return count
mcF(mc_rtn)
mcF(mc_endfn)

}

AND try(i, n, all) BE
{ LET L = mcNextlab()

mcComment("*n// Start of code from try(%n, %n, %n)*n", i, n, all)

IF i=1 DO
{ mcRK(mc_mv, ld, 0) // At the outermost level

mcRK(mc_mv, row, 0) // initialise ld, row, rd and count
mcRK(mc_mv, rd, 0)
mcRK(mc_mv, count, 0)

}

mcRR(mc_mv, poss, ld) // LET poss = (~(ld | row | rd)) & all
mcRR(mc_or, poss, row)
mcRR(mc_or, poss, rd)
mcR (mc_not, poss)
mcRK(mc_and, poss, all)

mcRK(mc_cmp, poss, 0) // IF poss DO
mcJL(mc_jeq, L)

TEST i=n
THEN { // We are on the final row and can place a queen

mcR(mc_inc, count) // count := count+1
}

ELSE { // We are not on the final row.
LET M = mcNextlab()
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mcL (mc_lab, M) // { Start of REPEATWHILE loop

mcRR(mc_mv, p, poss) // LET p = poss & -poss
mcR (mc_neg, p)
mcRR(mc_and, p, poss)
mcRR(mc_sub, poss, p) // poss := poss - p

mcR (mc_push, ld) // call try((ld+p)<<1, row+p, (rd+p)>>1)
mcR (mc_push, row)
mcR (mc_push, rd)
mcR (mc_push, poss)

mcRR(mc_add, ld, p)
mcRK(mc_lsh, ld, 1) // ld := (ld+p)<<1
mcRR(mc_add, row, p) // row := row+p
mcRR(mc_add, rd, p)
mcRK(mc_rsh, rd, 1) // rd := (rd+p)>>1

try(i+1, n, all)

mcR (mc_pop, poss)
mcR (mc_pop, rd)
mcR (mc_pop, row)
mcR (mc_pop, ld)

mcRK(mc_cmp, poss, 0)
mcJL(mc_jne, M) // } REPEATWHILE poss

}

mcL(mc_lab, L)
mcComment("// End of code from try(%n, %n, %n)*n*n",

i, n, all)
}

In this implementation all the working variables are held in registers and all re-
cursive calls are unwound knowing that the depth of recursion will be limited, in this
case to no more than 16. The stack is used to save the state at the moment when a
recursive call would have been made in the original program. An optimisation is done
based on the knowledge that if a queen can be placed on the nth row of n × n board
then the solution count can be incremented.

When running on a Pentium IV this implementation executes approximately 24
times faster than the normal interpretive Cintcode version and 25% faster than the
corresponding optimised C version of the algorithm.
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Installation

The implementation of BCPL described in this report is is available free via my Home
Page [3] to individuals for private use and to academic institutions. If you install the
system, please send me a message (to mr@cl.cam.ac.uk) so I can keep a record of who
is interested in it.

This implementation is designed to be machine independent being based on an
interpreter written in C. There are, however, hand written assembly language versions
of the interpreter for several architectures (including i386, MIPS, ALPHA and Hitachi
SH3). For Windows XP there are precompiled .exe files such as wincintsys.exe

and winrastsys.exe. These files should be copied into the appropriate bin directory
and renamed as cintsys.exe and rastsys.exe. For all the other architectures it is
necessary to rebuild the system.

The simplest installation is for Linux machines.

11.1 Linux Installation

This section describes how to install the BCPL Cintcode System on an IBM PC running
Linux.

1) First create a directory named BCPL and copy either bcpl.tgz or bcpl.zip into
it. These are available (free) via my home page [3] and both contain the same set of
packed files and directories.

2) Enter the BCPL directory and extract the files of the BCPL Cintcode System by:

cd BCPL

tar zxvf bcpl.tgz

or unpack bcpl.zip using:

cd BCPL

unzip -v bcpl.zip

Some web browsers will have already decompressed the .tgz file, so you may have
use the following command instead:
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cd BCPL

tar xvf bcpl.tgz

This step will create the directories cintcode, bcplprogs and natbcpl. The direc-
tory cintcode contains all the source files of the BCPL Cintcode System, bcplprogs
contains a collection of demonstration programs, and natbcpl contains a version of
BCPL that compiles into native code (for Intel and ALPHA machines).

3) In order to use the BCPL Cintcode system from another directory it is necessary to
define the shell the variables BCPLROOT, BCPLPATH and BCPLHDRS. These must specify
the absolute file names of the BCPL root directory, the directory containing the com-
piles commands and the directory containing the BCPL header files. The BCPLROOT

directory should also be added to your PATH. This can be done by editing the file
BCPL/cintcode/setbcplenv, if necessary, and running the command:

. setbcplenv under bash

or

source setbcplenv under the C-shell

This will execute commands similar to:

export BCPLROOT=$HOME/distribution/BCPL/cintcode

export BCPLPATH=$BCPLROOT/cin

export BCPLHDRS=$BCPLROOT/g

export PATH=$PATH:$BCPLROOT/bin

or

setenv BCPLROOT ${HOME}/distribution/BCPL/cintcode

setenv BCPLPATH ${BCPLROOT}/cin

setenv BCPLHDRS ${BCPLROOT}/g

setenv PATH ${PATH}:${BCPLROOT}/bin

4) Now change directory to cintcode and attempt to re-build and enter the BCPL
system:

cd cintcode

make clean

make

The line make clean is a recent addition to eliminate some commonly reported
problems. There is something wrong if the output of the above make command does
not end with something like:
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...

bin/cintsys

BCPL Cintcode System (25 Jan 2007)

0>

To troubleshoot, try typing the following lines to a shell prompt:

cintsys -f -v

or

cintsys -f -V

and study the output, in conjunction with sysc/cintsys.c and sysb/boot.b. Hope-
fully, there will be enough information there to diagnose and correct the problem.

5) Now recompile all the system software and commands. This is done by typing:

c compall

6) Next, try out a few commands, eg:

echo hello
bcpl com/echo.b to junk
junk hello
map pic
logout

The BCPL programs that are part of the system are: boot.b, blib.b and cli.b.
These reside in BCPL/cintcode/sysb and can be compiled by the following commands
(in the BCPL Cintcode System).

c bs boot
c bs blib
c bs cli

The standard commands are in BCPL/cintcode/com may be compiled using bc.

c bc echo
c bc abort
c bc logout
c bc stack
c bc map
c bc prompt

7) Read the documentation in cintcode/doc and any README files you can find. A log
of recent changes can be found in cintcode/doc/changes. The current version of this
BCPL manual is available from my home page as a .pdf file. There is a demonstration
script of commands in cintcode/doc/notes.
8) To compile and run a demo program such as bcplprogs/demos/queens.b:

cd ../bcplprogs/demos
cintsys
c b queens
queens
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11.2 Command Line Arguments

The commands cintsys and cintpos that invoke the Cintcode interpreter can be given
various arguments. These are:

-m n Set the cintcode memory size to n words.
-t n Set the tally vector size to n words.
-s Enter the cintcode system giving the name of this

file as the command for the CLI to run.
-c text Enter cintsys with standard input

setup to read the characters from text followed by
an end-of-stream character.

-- text Enter cintsys with standard input
setup to read the characters in text followed by
the characters of the old standard input.

-f Trace the use of environment variables in pathinput
-v Trace the bootstrapping process
-V As -v, but also include some Cincode level tracing
-h Output some help information.

The rastering version of the interpreter rastsys can receive the same arguments.

11.3 Installation on Other Machines

Carry out steps 1 to 4 above. In the directory BCPL/cintcode/sys you will find
directories for different architectures, e.g. ALPHA, MIPS, SUN4, SPARC, MSDOS,
MAC, OS2, BC4, Win32, CYGWIN32 and shWinCE. These contain files that are
architecture (or compiler) dependent, typically including cintasm.s (or cintasm.asm).
For some old versions of Linux, it is necessary to change _dosys to dosys (or vice-versa)
in the file sys/LINUX/cintasm.s.

Edit Makefile (typically by adding and removing comment symbols) as necessary
for your system/machine and then execute make in the cintcode directory, e.g:

make

Variants of the above should work for the other architectures running Unix.

11.4 Installation for Windows XP

The files wincintsys.exe and winrastsys.exe are included in the standard distribu-
tion and should work under many versions of the Windows operating systems (such as
Windows XP) just by typing the command:

wincintsys
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It may be more convenient to move them into a different directory and rename
them as cintsys.exe and rastsys.exe.

I have recently upgraded the Windows version of BCPL so that it can be compiled
and run using the freely available Microsoft C compiler and libraries. On a new PC
I installed the freely available .NET Framework 3.5 and the corresponding SDK 3.5.
This provided amongst many other things a C compiler and all the relevant libraries.

I then created a shortcut on the desktop with

Target: %SystemRoot%\system32\cmd.exe /q /k VC9env.bat

and

Start in: D:\distribution\BCPL\cintcode

Double clicking on this shortcut opens a Shell window with the required environ-
ment variable all set up C compilation and the BCPL running environment. If they
are not correct you may have to edit VC9env.bat. The BCPL system was then rebuilt
by the commands:

nmake /f MakefileVC clean

nmake /f MakefileVC

This should recompile and link all the C code of the BCPL Cintcode system and
then recompile all the standard BCPL system programs and commands. For good
measure, once the BCPL Cintcode system has been entered, recompile all the BCPL
code again by typing:

c compall

11.5 Installation using Cygwin

I recommend using the GNU development tools and utilities for Windows
95/98/NT/XP/etc that are available from http://sourceware.cygnus.com/cygwin/.

Edit the cintcode/Makefile to comment out the LINUX version

#CC = gcc -O9 -DforLINUX
#SYSM = ../cintcode/sys/LINUX
#CINTASM = cintasm.o
#ENDER = LITENDER

and enable the CYGWIN32 version

CC = gcc -O9 -DforCYGWIN32
CINTASM = cintasm.o
SYSM = ../cintcode/sys/CYGWIN32
ENDER = LITENDER

Then type:

make

This should recompile the system and create the executable cintsys.exe.
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Remember to include the cintcode directory in your PATH and BCPLPATH shell vari-
ables, so that the cintcode system can be run in any directory.

Careful inspection of the Makefile and directories in cintcode/sys will show that
versions also exist that use Microsoft C++ 5.0 and Borland C4.0, but these are likely
to be out of date and their use is not recommended.

11.6 Installation for Windows CE2.0

A version of the BCPL Cintcode System is available for handheld ma-
chines running Windows CE version 2.0. For installation details see the file
cintcode/sys/shWinCE/README. This system provides ascrollable window for inter-
action with the CLI. It also provides a simple graphical facilities using a graphics
window. The system has only been tested on an HP 620LX handheld machine.

11.7 The Native Code Version

A BCPL native mode system for 386/486/Pentium based machines is in directory
MCPL/native. It can be re-built and test by changing to the directory BCPL/natbcpl

and running make.
A version (64 bit) for the DEC Alpha is also available. To re-build this it is necessary

to comment out the lines for LINUX and uncomment the lines for the ALPHA in
Makefile, before running make.
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Example Programs

12.1 Coins

The following program prints out how many different ways a sum of money can be
composed from coins of various denominations.

GET "libhdr"

LET coins(sum) = c(sum, (TABLE 200, 100, 50, 20, 10, 5, 2, 1, 0))

AND c(sum, t) = sum<0 -> 0,
sum=0 -> 1,
!t=0 -> 0,
c(sum, t+1) + c(sum-!t, t)

LET start() = VALOF
{ writes("Coins problem*n")
t(0); t(1); t(2); t(5); t(21); t(100); t(200)
RESULTIS 0

}

AND t(n) BE writef("Sum = %i3 number of ways = %i6*n", n, coins(n))

159
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12.2 Primes

The following program prints out a table of all primes less than 1000, using the sieve
method.

GET "libhdr"

GLOBAL { count: ug }

MANIFEST { upb = 999 }

LET start() = VALOF
{ LET isprime = getvec(upb)

count := 0
FOR i = 2 TO upb DO isprime!i := TRUE // Until proved otherwise.

FOR p = 2 TO upb IF isprime!p DO
{ LET i = p*p

UNTIL i>upb DO { isprime!i := FALSE; i := i + p }
out(p)

}

writes("*nend of output*n")
freevec(isprime)
RESULTIS 0

}

AND out(n) BE
{ IF count REM 10 = 0 DO newline()

writef(" %i3", n)
count := count + 1

}

12.3 Queens

The following program calculates the number of ways n queens can be placed on a n×n

chess board without any two occupying the same row, column or diagonal.

GET "libhdr"

GLOBAL { count:200; all:201 }

LET try(ld, row, rd) BE TEST row=all

THEN count := count + 1

ELSE { LET poss = all & ~(ld | row | rd)
UNTIL poss=0 DO
{ LET p = poss & -poss

poss := poss - p
try(ld+p << 1, row+p, rd+p >> 1)

}
}
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LET start() = VALOF
{ all := 1

FOR i = 1 TO 12 DO
{ count := 0

try(0, 0, 0)
writef("Number of solutions to %i2-queens is %i5*n", i, count)
all := 2*all + 1

}

RESULTIS 0
}

12.4 Fridays

The following program prints a table of how often the 13th day of the month lies on
each day of the week over a 400 year period. Since there are an exact number of weeks
in 4 centuries, program shows that the 13th is most of a Friday!

GET "libhdr"

MANIFEST { mon=0; sun=6; jan=0; feb=1; dec=11 }

LET start() = VALOF
{ LET count = TABLE 0, 0, 0, 0, 0, 0, 0

LET daysinmonth = TABLE 31, ?, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31

LET days = 0

FOR year = 1973 TO 1973+399 DO
{ daysinmonth!feb := febdays(year)

FOR month = jan TO dec DO
{ LET day13 = (days+12) REM 7

count!day13 := count!day13 + 1
days := days + daysinmonth!month

}
}
FOR day = mon TO sun DO

writef("%i3 %sdays*n",
count!day,
select(day,

"Mon","Tues","Wednes","Thurs","Fri","Sat","Sun")
)

RESULTIS 0
}

AND febdays(year) = year REM 400 = 0 -> 29,
year REM 100 = 0 -> 28,
year REM 4 = 0 -> 29,
28

AND select(n, a0, a1, a2, a3, a4, a5, a6) = n!@a0
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12.5 Lambda Evaluator

The following program is a simple parser and evaluator for lambda expressions.

GET "libhdr"

MANIFEST {
// selectors
H1=0; H2; H3; H4

// Expression operators and tokens
Id=1; Num; Pos; Neg; Mul; Div;Add; Sub
Eq; Cond; Lam; Ap; Y
Lparen; Rparen; Comma; Eof
}

GLOBAL {
space:200; str; strp; strt; ch; token; lexval
}

LET lookup(bv, e) = VALOF
{ WHILE e DO { IF bv=H1!e RESULTIS H2!e

e := H3!e
}

writef("Undeclared name %c*n", H2!bv)
RESULTIS 0

}

AND eval(x, e) = VALOF SWITCHON H1!x INTO
{ DEFAULT: writef("Bad exppression, Op=%n*n", H1!x)

RESULTIS 0
CASE Id: RESULTIS lookup(H2!x, e)
CASE Num: RESULTIS H2!x
CASE Pos: RESULTIS eval(H2!x, e)
CASE Neg: RESULTIS - eval(H2!x, e)
CASE Add: RESULTIS eval(H2!x, e) + eval(H3!x, e)
CASE Sub: RESULTIS eval(H2!x, e) - eval(H3!x, e)
CASE Mul: RESULTIS eval(H2!x, e) * eval(H3!x, e)
CASE Div: RESULTIS eval(H2!x, e) / eval(H3!x, e)
CASE Eq: RESULTIS eval(H2!x, e) = eval(H3!x, e)
CASE Cond: RESULTIS eval(H2!x, e) -> eval(H3!x, e), eval(H4!x, e)
CASE Lam: RESULTIS mk3(H2!x, H3!x, e)

CASE Ap: { LET f, a = eval(H2!x, e), eval(H3!x, e)
LET bv, body, env = H1!f, H2!f, H3!f
RESULTIS eval(body, mk3(bv, a, env))

}
CASE Y: { LET bigf = eval(H2!x, e)

// bigf should be a closure whose body is an
// abstraction eg Lf Ln n=0 -> 1, n*f(n-1)
LET bv, body, env = H1!bigf, H2!bigf, H3!bigf
// Make a closure with a missing environment
LET yf = mk3(H2!body, H3!body, ?)
// Make a new environment including an item for bv
LET ne = mk3(bv, yf, env)
H3!yf := ne // Now fill in the environment component
RESULTIS yf // and return the closure

}
}
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// *************** Syntax analyser ***********************

// Construct Corresponding Tree

// a ,.., z --> [Id, ’a’] ,.., [Id, ’z’]
// dddd --> [Num, dddd]
// x y --> [Ap, x, y]
// Y x --> [Y, x]
// x * y --> [Times, x, y]
// x / y --> [Div, x, y]
// x + y --> [Plus, x, y]
// x - y --> [Minus, x, y]
// x = y --> [Eq, x, y]
// b -> x, y --> [Cond, b, x, y]
// Li y --> [Lam, i, y]

LET mk1(x) = VALOF { space := space-1; !space := x; RESULTIS space }

AND mk2(x,y) = VALOF { mk1(y); RESULTIS mk1(x) }

AND mk3(x,y,z) = VALOF { mk2(y,z); RESULTIS mk1(x) }

AND mk4(x,y,z,t) = VALOF { mk3(y,z,t); RESULTIS mk1(x) }

AND rch() BE
{ ch := Eof
IF strp>=strt RETURN
strp := strp+1
ch := str%strp

}

AND parse(s) = VALOF
{ str, strp, strt := s, 0, s%0
rch()
RESULTIS nexp(0)

}
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AND lex() BE SWITCHON ch INTO
{ DEFAULT: writef("Bad ch in lex: %c*n", ch)

CASE Eof: token := Eof
RETURN

CASE ’ ’:
CASE ’*n’ :rch(); lex(); RETURN

CASE ’a’:CASE ’b’:CASE ’c’:CASE ’d’:CASE ’e’:
CASE ’f’:CASE ’g’:CASE ’h’:CASE ’i’:CASE ’j’:
CASE ’k’:CASE ’l’:CASE ’m’:CASE ’n’:CASE ’o’:
CASE ’p’:CASE ’q’:CASE ’r’:CASE ’s’:CASE ’t’:
CASE ’u’:CASE ’v’:CASE ’w’:CASE ’x’:CASE ’y’:
CASE ’z’:

token := Id; lexval := ch; rch(); RETURN

CASE ’0’:CASE ’1’:CASE ’2’:CASE ’3’:CASE ’4’:
CASE ’5’:CASE ’6’:CASE ’7’:CASE ’8’:CASE ’9’:

token, lexval := Num, 0
WHILE ’0’<=ch<=’9’ DO
{ lexval := 10*lexval + ch - ’0’

rch()
}
RETURN

CASE ’-’: rch()
IF ch=’>’ DO { token := Cond; rch(); RETURN }
token := Sub
RETURN

CASE ’+’: token := Add; rch(); RETURN
CASE ’(’: token := Lparen; rch(); RETURN
CASE ’)’: token := Rparen; rch(); RETURN
CASE ’**’: token := Mul; rch(); RETURN
CASE ’/’: token := Div; rch(); RETURN
CASE ’L’: token := Lam; rch(); RETURN
CASE ’Y’: token := Y; rch(); RETURN
CASE ’=’: token := Eq; rch(); RETURN
CASE ’,’: token := Comma; rch(); RETURN

}
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AND prim() = VALOF
{ LET a = TABLE Num, 0
SWITCHON token INTO
{ DEFAULT: writef("Bad expression*n"); ENDCASE

CASE Id: a := mk2(Id, lexval); ENDCASE
CASE Num: a := mk2(Num, lexval); ENDCASE
CASE Y: RESULTIS mk2(Y, nexp(6))
CASE Lam: lex()

UNLESS token=Id DO writes("Id expected*n")
a := lexval
RESULTIS mk3(Lam, a, nexp(0))

CASE Lparen: a := nexp(0)
UNLESS token=Rparen DO writef("’)’ expected*n")
lex()
RESULTIS a

CASE Add: RESULTIS mk2(Pos, nexp(3))
CASE Sub: RESULTIS mk2(Neg, nexp(3))

}
lex()
RESULTIS a

}

AND nexp(n) = VALOF { lex(); RESULTIS exp(n) }

AND exp(n) = VALOF
{ LET a, b = prim(), ?

{ SWITCHON token INTO
{ DEFAULT: BREAK

CASE Lparen:
CASE Num:
CASE Id: UNLESS n<6 BREAK

a := mk3(Ap, a, exp(6)); LOOP
CASE Mul: UNLESS n<5 BREAK

a := mk3(Mul, a, nexp(5)); LOOP
CASE Div: UNLESS n<5 BREAK

a := mk3(Div, a, nexp(5)); LOOP
CASE Add: UNLESS n<4 BREAK

a := mk3(Add, a, nexp(4)); LOOP
CASE Sub: UNLESS n<4 BREAK

a := mk3(Sub, a, nexp(4)); LOOP
CASE Eq: UNLESS n<3 BREAK

a := mk3(Eq, a, nexp(3)); LOOP
CASE Cond: UNLESS n<1 BREAK

b := nexp(0)
UNLESS token=Comma DO writes("Comma expected*n")
a := mk4(Cond, a, b, nexp(0)); LOOP

}
} REPEAT
RESULTIS a

}
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AND try(expr) BE
{ LET v = VEC 2000

space := v+2000
writef("Trying %s*n", expr)
writef("Answer: %n*n", eval(parse(expr), 0))

}

AND start() = VALOF
{ try("(Lx x+1) 2")

try("(Lx x) (Ly y) 99")
try("(Ls Lk s k k) (Lf Lg Lx f x (g x)) (Lx Ly x) (Lx x) 1234")
try("(Y (Lf Ln n=0->1,n**f(n-1))) 5")
RESULTIS 0

}

12.6 Fast Fourier Transform

The following program is a simple demonstration of the algorithm for the fast fourier
transform. Instead of using complex numbers, it uses integer arithmetic modulo 65537
with an appropriate Nth root of unity.

GET "libhdr"

MANIFEST {
modulus = #x10001 // 2**16 + 1

$$ln10 // Set condition compilation flag to select data size
//$$walsh

$<ln16 omega = #x00003; ln = 16 $>ln16 // omega**(2**16) = 1
$<ln12 omega = #x0ADF3; ln = 12 $>ln12 // omega**(2**12) = 1
$<ln10 omega = #x096ED; ln = 10 $>ln10 // omega**(2**10) = 1
$<ln4 omega = #x08000; ln = 4 $>ln4 // omega**(2**4) = 1
$<ln3 omega = #x0FFF1; ln = 3 $>ln3 // omega**(2**3) = 1

$<walsh omega=1 $>walsh // The Walsh transform

N = 1<<ln // N is a power of 2
upb = N-1
}

STATIC { data=0 }
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LET start() = VALOF
{ writef("fft with N = %n and omega = %n modulus = %n*n*n",

N, omega, modulus)

data := getvec(upb)

UNLESS omega=1 DO // Unless doing Walsh tranform
check(omega, N) // check that omega and N are consistent

FOR i = 0 TO upb DO data!i := i
pr(data, 7)

// prints -- Original data
// 0 1 2 3 4 5 6 7

fft(data, ln, omega)
pr(data, 7)

// prints -- Transformed data
// 65017 26645 38448 37467 30114 19936 15550 42679

fft(data, ln, ovr(1,omega))
FOR i = 0 TO upb DO data!i := ovr(data!i, N)
pr(data, 7)

// prints -- Restored data
// 0 1 2 3 4 5 6 7

RESULTIS 0
}

AND fft(v, ln, w) BE // ln = log2 n w = nth root of unity
{ LET n = 1<<ln
LET vn = v+n
LET n2 = n>>1

// First do the perfect shuffle
reorder(v, n)

// Then do all the butterfly operations
FOR s = 1 TO ln DO
{ LET m = 1<<s

LET m2 = m>>1
LET wk, wkfac = 1, w
FOR i = s+1 TO ln DO wkfac := mul(wkfac, wkfac)
FOR j = 0 TO m2-1 DO
{ LET p = v+j

WHILE p<vn DO { butterfly(p, p+m2, wk); p := p+m }
wk := mul(wk, wkfac)

}
}

}

AND butterfly(p, q, wk) BE { LET a, b = !p, mul(!q, wk)
!p, !q := add(a, b), sub(a, b)

}
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AND reorder(v, n) BE
{ LET j = 0

FOR i = 0 TO n-2 DO
{ LET k = n>>1

// j is i with its bits is reverse order
IF i<j DO { LET t = v!j; v!j := v!i; v!i := t }
// k = 100..00 10..0000..00
// j = 0xx..xx 11..10xx..xx
// j’ = 1xx..xx 00..01xx..xx
// k’ = 100..00 00..0100..00
WHILE k<=j DO { j := j-k; k := k>>1 } //) "increment" j
j := j+k //)

}
}

AND check(w, n) BE
{ // Check that w is a principal nth root of unity

LET x = 1
FOR i = 1 TO n-1 DO { x := mul(x, w)

IF x=1 DO writef("omega****%n = 1*n", i)
}

UNLESS mul(x, w)=1 DO writef("Bad omega**%n should be 1*n", n)
}

AND pr(v, max) BE
{ FOR i = 0 TO max DO { writef("%I5 ", v!i)

IF i REM 8 = 7 DO newline()
}

newline()
}

AND dv(a, m, b, n) = a=1 -> m,
a=0 -> m-n,
a<b -> dv(a, m, b REM a, m*(b/a)+n),
dv(a REM b, m+n*(a/b), b, n)

AND inv(x) = dv(x, 1, modulus-x, 1)

AND add(x, y) = VALOF
{ LET a = x+y

IF a<modulus RESULTIS a
RESULTIS a-modulus

}

AND sub(x, y) = add(x, neg(y))

AND neg(x) = modulus-x

AND mul(x, y) = x=0 -> 0,
(x&1)=0 -> mul(x>>1, add(y,y)),
add(y, mul(x>>1, add(y,y)))

AND ovr(x, y) = mul(x, inv(y))
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Appendix A

BCPL Syntax Diagrams

The syntax of BCPL is specified using the transition diagrams given in figures
A.1, A.2, A.3 and A.4. Within the diagrams the syntactic categories program,
section, declaration, command and expressionn are represented by the rounded boxes:

program , section , D , C and En , respectively.

The rectangular boxes are called test boxes and can only be traversed if the con-
dition labelling the box matches the current input. When the label is a token, as in

WHILE and := , it must match the next input token for the test to succeed. The

test box eof is only satisfied if the end of file has been reached. Sometimes the

test box contains a side condition, as in REM  n<6 , in which case the side condition

must also be satisfied. The only other test boxes are is call and is name which
are only satisfied if the most recently read expression is syntactically a function call
or a name, respectively. By setting n successively from 0 to 8 in the definition of the

category En , we obtain the definitions of E0 to E8 . Starting from the

definition of program , we can construct an infinite transition diagram containing

only test boxes by simply replacing all rounded boxes by their definitions, recursively.
The parsing algorithm searches through this infinite diagram for a path with the same
sequence of tokens as the program being parsed. In order to eliminate ambiguities,
the left hand branch at a branch point is tried first. Notice how this rule causes the
command

IF i>10 DO i := i/2 REPEATUNTIL i<5

to be equivalent to

IF i>10 DO { i := i/2 REPEATUNTIL i<5 }

and not

{ IF i>10 DO i := i/2 } REPEATUNTIL i<5

A useful property of these diagrams is that, once a test box has been successfully
traversed, previous branching decisions need not be reconsidered and so the parser
need never backtrack.
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eof

.

section

program

section

SECTION string ;

NEEDS string ;

name = E0 ; } ;

{

MANIFEST

STATIC

GLOBAL

C

E0

};E0:name

{

AND

=

BE

)name

,

(nameLET

Figure A.1: Program, Section
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name

STATIC

MANIFEST = E0 ; }

D

{

};E0:name

GLOBAL

LET name

AND

=

name

VEC E0

,

,

= E0

,

( name

,

)

BE C

= E0

{

Figure A.2: Declarations
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GOTO

TEST

FOR name THEN

UNLESS

IF

E0 INTO

,

E0

:=

:=E0

E0

is call

is name : C

CASE

DEFAULT

E0

E0 TO E0 BY E0

DO

C

E0 THEN

DO

C ELSE C

E0

E0

;D

RESULTIS

=

WHILE

UNTIL

SWITCHON

E0

,

{

{

C

BREAK

LOOP

ENDCASE

RETURN

FINISH

C ; }

,

SKIP

REPEATWHILE

REPEATUNTIL

REPEAT

E0

Figure A.3: Commands
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TRUE

En

?

FALSE

name

number

character

string

!

@

+

−

ABS

(

NOT

TABLE

,

E0

E8

E5

E4

E3

E2

E1

E0 , E0

C

E0

,

E3

E5

E7

)

)

E0

VALOF

E4

(    n<9

!    n<8

*    n<6

/    n<6

+    n<5

−    n<5

=    n<4 =    n<4

~=   n<4 ~=   n<4

<    n<4 <    n<4

>    n<4 >    n<4

<=   n<4 <=   n<4

>=   n<4 >=   n<4

<<   n<4

>>   n<4

&    n<3

|    n<2

EQV  n<1

−>   n<1

E6

%    n<8

OF   n<8

SLCT E0

E0

E0

:

:

MOD  n<6

XOR  n<1

Figure A.4: Expressions
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