
Telecommunication Systems 28:2, 185–210, 2005
 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Software-Based Video/Audio Processing for Cellular
Phones

JIN-HWAN JEONG and CHUCK YOO {jhjeong;hxy}@os.korea.ac.kr
Korea University, Anam 5 Ga, SeongBuk-Gu, Seoul, Republic of Korea

Abstract. Nowadays, most cellular phones are used beyond voice communication. Although the process-
ing power of cellular phones is sufficient for most data applications, it is difficult to play video and audio
contents in software because of their computational complexity and lack of basic tools for multimedia
processing, so software-based multimedia processing on cellular phones is a challenging issue. Several
transcoding methods are introduced to address this issue, but they are mainly of the DCT-domain conver-
sion. Hence, they are only applicable to high-end cellular phones. To develop a solution for low-end and
mid-tier cellular phones, we begin this paper by analyzing the complexity of existing video standards to
see if it is possible to play them on cellular phones by software. Next, various coding profiles as combi-
nations of subalgorithms are studied, and we select a profile that adapts its complexity to the processing
power of cellular phones. Also, an efficient dithering algorithm called out-of-order dithering is developed.
We implement the profile with out-of-order dithering in an actual cellular phone software environment and
present the performance results. The performance results show that software based video/audio processing
is indeed possible on low-end cellular phones.

Keywords: video/audio processing, cellular phone, adaptation

1. Introduction

Most current and future cellular networks like GSM-GPRS, UMTS, CDMA-2000, or
IMT-2000 are serving various packet-oriented transmission modes. In terms of the band-
width, it is broad enough for cellular phones to be ready for new downloading services
or streaming various multimedia formats such as H.263 [28], MPEG-x [4; Legall, 12;
Talluri, 26], etc. Also, the third generation partnership project (3GPP) has selected sev-
eral multimedia codecs for inclusion into its multimedia specifications. As a result, there
is a great level of interest to use a wireless cellular phone for multimedia applications like
MMS (Multimedia Messaging Service) [24], PSS (Packet-switched Streaming Service)
and PCS (Packet-switched Conversational Service).

Although the wireless network speed is sufficient for multimedia data transmis-
sion, it is not simple to provide multimedia services because of two major constraints:
(1) network constraint: packet losses and bit errors peculiar to wireless networks and
(2) terminal constraint: insufficient hardware resources. The former is concerned with
bit error detection, error collection, and error concealment as well as jitter delay man-
agement. As network issues are actively researched elsewhere in this issue, we will not
discuss them anymore. The latter is concerned with minimizing terminal complexity that

186 JEONG AND YOO

is a key to success in wireless multimedia. This paper is focused on the algorithmic com-
plexity of processing multimedia data and decoding capabilities of wireless terminals,
especially cellular phones and whether they have enough power to process multimedia
data without additional hardware supports.

Usually, as the processing pattern of multimedia applications is CPU-intensive or
memory-intensive, efficient implementation has been an interesting issue for the last
decade. As a result, many coding standards are well analyzed in terms of complex-
ity and performance, and then various optimization techniques are introduced. How-
ever, most of these results are targeted and tested on general-purpose processors. On
the contrary, these results ironically show that the current coding standards, espe-
cially video coding standards cannot be decodable on low-end cellular phones in soft-
ware. The reason is not only because of its heavy computational requirements, but
also because of a lack of the “idle” processing power (“idle” means the remaining
CPU power excluding CPU time for tasks for phone management) of cellular phones.
Some service providers transcode existing contents to alleviate computational require-
ments as well as to meet channel constraints or size constraints. However, most
transcoding techniques [Assuncao and Ghanbari, 3; Dugad and Ahuja, 5; Han et al., 9;
Merhav and Bhaskaran, 15; Morrison et al., 16; Sostawa et al., 25; Youn and Sun, 31;
Zhu et al., 33] are focused on reducing bit-rate or spatial down-sampling rather than on
lightening complexity. Therefore, another transcoding focusing on lightening computa-
tional complexity is needed.

The fundamental reason why common video standards cannot be decodable in soft-
ware on cellular phones is that the goal of the video coding algorithms is to maximize
the coding efficiency. This approach makes sense in the highly congested Internet where
high performance PCs are connected, but under wireless network environments mainly
composed of cellular phones, this approach overloads a low-powered processor in cellu-
lar phones. In principle, the more data is compressed, the more it requires computation
for decoding at the same quality [Jeong and Yoo, 10]. Needless to say, the compres-
sion itself is an important factor because it reduces the size of data transmission and the
space of contents; but the balance between computation and compression is indispens-
able in some cases. In a sense, this point coincides with the purpose of a transcoder that
balances between two aspects at the wireless proxy server. Recent video standards are
trying to cope with the balancing issue with profile levels, but it is not sufficient (we did
some experiments, and will show the results later in this paper).

To address above problems, we introduce two adaptation mechanisms of multime-
dia coding algorithms to the capabilities of target cellular phones: processing adaptation
and displaying adaptation. The former is about an adaptation of computational com-
plexity to the processing power, and the second adaptation is about an efficient dithering
algorithm that is indispensable with low resolution displayers.

This paper is organized as follows. In section 2, we mention backgrounds about
cellular phone hardware configurations and MPEG-4 video standards with experiment
results, related works, and explain the motivation of transcoding for cellular phones.
Next, in section 3, we divide several video coding algorithms into multiple subalgorithms

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 187

to see how much decoding power is required for each subalgorithm. We roughly classify
subalgorithms into four groups: transform coding, entropy coding, quantization coding,
and prediction coding. In section 4, quantitative analyses of each subalgorithm in terms
of two aspects (compression ratio & computation requirements) are discussed. Also, we
will envision a light-weight codec (LC) as an example of video processing adaptation for
low-end low-powered cellular phones, and an audio codec specialized in cellular phones,
and explain what criteria were used to design our LC. Also, the displaying adaptation that
uses an “out-of-order” dithering mechanism at the cost of graceful quality degradation
for low resolution devices is explained. In section 5, some implementation issues related
with cellular phones such as synchronization and watch dog are mentioned, and then we
will show experiment results. Finally, we conclude this paper in section 6.

2. Backgrounds and related work

2.1. Hardware configuration of cellular phones

Before going through the correlation of two aspects – computation requirements and
compression ratio, we describe three important resources of a cellular phone: processor,
memory, and display device. While there are several other resources affecting multime-
dia processing, these are dominant factors.

First, we examine the core processor of the most widespread cellular phones.
ARM7TDMI is one of the most representative core processors of cellular phones today.
It is a 32-bit RISC processor that executes 32-bit instruction (ARM mode instruction)
as well as 16-bit instruction (THUMB mode instruction) for code density. It is a high
performance embedded processor, but, even in an idle state, it always runs a few tasks in
the cellular phone system. The tasks are mainly for managing a cellular phone system
itself such as searching for a base station, which consumes significant CPU time. Usu-
ally, these tasks occupy 70–80% of CPU time. In addition, after making a call, it burns
CPU cycles to run specific protocol stacks. At last, CPU time left is merely 1-2MIPS
(in the case of MSM-5000 [18]) for multimedia applications, so “lightness” is an indis-
pensable property of multimedia applications. Table 1 shows the example specification
of Qualcomm chipsets.

The ARM7TDMI [2] processor operates at 13.5 MHz clock speed (usually CDMA-
2000 1x phone) in its idle state. It is quite obvious that its clock speed is too low to

Table 1
Widely used Qualcomm chipset.

Chipset Processor Freq.** Cache

MSM-3100 ARM7TDMI 19/19 MHz N/A
MSM-5000* ARM7TDMI 13.5/27 MHz N/A

* CDMA-2000 1x chipset.
** The first is for idle state, the second is for call state.

188 JEONG AND YOO

decode video standards such as MPEG-4 even 1 frame per second by software. Even
though a faster processor that is powerful enough to decode video standards is available
in the market, it is not easy to equip a cellular phone with a high speed processor because
of the hardware cost and its power consumption that is a scarce resource in cellular
phones. In other words, the development speed of the rechargeable battery technology
is much slower than that of the processor technology so that cellular phones cannot be
equipped with a higher speed processor easily.

Second, cellular phones are suffering from a memory shortage because of small
RAM size and an absence of a memory management mechanism. After a cellular phone
is powered-up, the free memory size for run-time execution is typically a few hundred
kilobytes that are not sufficient for decoding. Moreover, the memory access speed is
very slow. Furthermore, ARM7TDMI has no level 1 cache memory so that frequent
memory reference operations may degrade the overall system performance. To make
matters worse, frequent memory operations drain battery power quickly.

Lastly, display devices of cellular phones are characterized by low dot brightness,
high dot reaction time and low resolution. Because of the battery power management,
the brightness of cellular phone’s LCD is dimmer than that of a normal LCD, so it is
hard to notice the very slight color difference represented on a cellular phone’s LCD. In
addition, some STN LCD can display images up to 3 fr/s due to high dot reaction time,
and some TFT-LCD can do up to 15 fr/s at most. In the case of color resolution, the
color depth varies from 1 bit to 16 bits. If the LCD color depth is below 16 bits, the
number of colors is not sufficient for natural representation, which requires special ren-
dering mechanisms like dithering. Actually, the fact that cellular phones are equipped
with a low resolution LCD has its advantages and disadvantages. The advantage is re-
lated with the fact that the precision of color representation on target display devices is
low; hence, video pixel data does not need to be processed at full precision throughout.
On the other hand, a low-resolution display below 16 bits color depth raises the dither-
ing issue that is the main disadvantage. Dithering is very CPU-intensive because the
input data of dithering algorithms is every pixel of an image. It is important to select a
proper dithering algorithm and to merge it with the decoder and cellular phone system.
Table 2 shows the specifications of various LCD types used for cellular phones on the
market.

Table 2
Cellular phone LCD specifications and cellular phone prices.

Model* Color depth RGB format Price

SCH-X250 8 bits 3:3:2 180$
SCH-X290 12 bits 4:4:4 227$
SCH-X590 16 bits 5:5:6 300$
SCH-V300** 18 bits 6:6:6 590$

* Samsung Electronics Co. Ltd.
** Hardware VOD (MPEG-4) cellular phone.

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 189

Table 3
MPEG-4 decoding time.

Clip Compression ratio Dimension Decoding time

51.m4v 51 : 1 176 X 144 4039 us/fr
49.m4v 49 : 1 240 X 96 3797 us/fr
38.m4v 38 : 1 240 X 112 4853 us/fr

Pentium III 750 MHz, 1 GB RAM.

2.2. Decoding performance of MPEG-4 simple profile

To quantify the video playback on a cellular phone equipped with the above hardware
configuration, we ran an optimized MPEG-4 decoder on a PC platform and measured
the performance. The test system consists of Pentium III at 750 MHz CPU and 1 Gbytes
memory. Three test clips are used. As shown in table 3, the pure decoding time is about
4039 us/fr on average. Even if we suppose that the processing power of ARM7TDMI
is equivalent to that of Pentium III (actually, Pentium III processor operates much more
efficiently at the same clock speed), we can estimate that the pure decoding time on
ARM7TDMI is 8981 ms/fr. Taking display time into account, we roughly conclude that
cellular phones can play an MPEG-4 clip at 1 fr/s by software at best.

2.3. Multimedia service system overview

To overcome the above performance issue, many cellular phone manufacturers have tried
hardware solutions. To play video contents on a cellular phone, they attached a specific
media coprocessor to a cellular phone. For example, SCH-V300 [21] is equipped with
an MPEG-4 decoder chip for video playback. It shows 10–15 fr/s capability to decode
a QCIF-sized MPEG-4 clip. The hardware approach increases the frame rate easily, but
it has two major drawbacks.

The first is about flexibility. A media coprocessor usually handles a specific video
format, which means that an MPEG-4 decoder chip can only decode MPEG-4 clips.
The second is the cost. An additional media coprocessor drives the architecture of a
cellular phone system complex and raises the overall hardware cost. Table 2 shows
the comparison of a hardware VOD cellular phone (SCH-V300) and non-VOD cel-
lular phones. Although SCH-V300 has an outstanding LCD, the price point is very
high.

Figure 1 illustrates the overall architecture for a typical mobile multimedia ser-
vice system. The contents are authored by contents providers, and they are also
transcoded by the authoring server to meet the capabilities of cellular phones. Cel-
lular phones are equipped with a WAP browser and a suitable multimedia player.
With a phone, a subscriber connects to a server that contains clips. A clip is se-
lected from the menu, and it is streamed or downloaded from the pumping server.

1 898 ms = 897,556 us = 4039 us∗ (750 MHz/13.5 (clock speed of ARM7TDMI in a idle state) MHz)∗
(100%/25% (available CPU time)).

190 JEONG AND YOO

Figure 1. Overview of a multimedia service system for cellular phones.

As mentioned in the previous paragraph, high-end cellular phones with a media co-
processor can download or stream standard video files such as H.263, MPEG-4, etc.
(dotted line in figure 1). The transcoding in figure 1 is done in the authoring tool
for bit-rate conversion [Assuncao and Ghanbari, 3; Han et al., 9; Morrison et al., 16;
Sostawa et al., 25; Youn and Sun, 31], spatial down-sampling [Dugad and Ahuja, 5;
Merhav and Bhaskaran, 15; Zhu et al., 33], and format conversion [Shanableh and Ghan-
bari, 22]. All of these are used for resizing the image to the cellular phone’s LCD, for
adjusting bit-rate to reduce stream size or frame rate to channel constraints, and for
supporting various video formats. However, since these kinds of transcoding are still
CPU-intensive, only high-end phones can decode the transcoded contents properly. We
need a new transcoding method for low-end cellular phones without a media coproces-
sor, which is the goal of this paper.

3. Analysis of a video coding standard

The most widely used video coding standard is block-based hybrid video coding in
which each video stream is divided into blocks of fixed size and each block is more or
less processed independently, and is therefore named “block-based”. The word “hybrid”
means that each block is coded using a combination of motion compensated temporal
prediction and transform coding. In this paper, we chose MPEG-4 as a representative
block-based hybrid coding for the performance analysis because it is widely used.

We measure the decoding times of MPEG-4 in table 4 where chip names mean
their respective compression ratio. VLD, IDCT, Pred, and Dequant mean variable length
decoding, inverse DCT transform, syntax parsing and inter/intra frame prediction, and
dequantization with scaling respectively. The intra and inter blocks are measured sep-

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 191

Table 4
Decoding time of subalgorithms.

Clip Block Count VLD IDCT Pred Dequant Comp. ratio

51.m4v Intra 4170 2.11 2.81 2.70 1.36 12.08
Inter 134232 1.15 N/A 3.78 0.16 52.21

49.m4v Intra 14538 1.84 2.44 2.76 1.19 21.23
Inter 497382 1.20 N/A 4.03 0.16 49.82

38.m4v Intra 15756 2.25 2.59 2.71 1.38 11.65
Inter 623064 1.39 N/A 4.56 0.14 38.67

Test platform: Pentium III 750 MHz, 1 GB RAM, Unit: us/block.

Table 5
Decoding time of each function.

Rank Function name Decoding time Description – subalgorithm

1 DCTInv_8 × 8_16s 13.43% Inverse DCT (one block) – IDCT, Pred
2 MC_blk_XYHalf 11.13% Motion compensation in half XY pixel mode – Pred
3 MC_blk_Int 8.52% Motion compensation (interpolation) – Pred
4 VlcDecTCOEF 4.91% Variable length decoding of coefficients – VLD
5 MC_blk_XHalf 3.60% Motion compensation in half X pixel mode – Pred
..
.

..

.
..
. The rest is committed

Test platform: Pentium III 750 MHz, 1 GB RAM.

arately. Also, we measure the CPU time at the level of functions and show in table 5
by the decoding time. A function of table 5 is an implementation of a subalgorithm of
table 4 or an implementation of a part of a subalgorithm.

Table 4 shows the computationally intensive subalgorithms listed in order, IDCT,
Pred, VLD, and Dequant. In the case of Pred, it means spatial prediction for intra block
and temporal motion prediction for inter block. Hence, Pred requires several major
functions (DCTInv_8 × 8_16s, MC_blk_XYHalf, MC_blk_Int, and so on). For this
reason, we classify subalgorithms by functions. “Subalgorithm” of “Description – sub-
algorithm” column of table 5 means subalgorithms mentioned in table 4. Prediction
coding algorithm (Pred) seems to be most intensive, but Pred is the sum of IDCT time
and pixel compensation time. Actually, as shown in table 5, IDCT is the most CPU-
intensive.

To analyze the video codec in terms of the compression ratio and computational
complexity, we decompose various video standards into four subalgorithms (transform
coding, prediction coding, entropy coding, and quantization coding), and summarize
their computational requirements and contribution for compression ratio respectively. As
a matter of convenience, we categorize the four subalgorithms into reference frame cod-
ing (transform coding, entropy coding, and quantization coding) and prediction frame
coding (pixel compensation and error term coding).

192 JEONG AND YOO

3.1. Reference frame coding

Transform coding. The most widely used transform coding techniques are categorized
into Fourier Transform (FT) and Wavelet Transform (WT) [Graps, 8]. In this paper, we
investigate DCT (FT), SPIHT (WT), and HAAR (WT) algorithms for their computa-
tional requirements.

At first, the DCT algorithm [Arai et al., 1; Feig and Winograd, 6; Loeffler et
al., 14] is the most popular transform coding that has been adopted by MPEG-x, H.26x,
etc. Many algorithms have been proposed for the efficient calculation of the two-
dimensional IDCT. Some algorithms transform 2D pixel values into 2D frequency coef-
ficients directly, but some algorithms compute 1D IDCT by row and column in sequence
for 2D IDCT. The notable algorithm is AAN [Arai et al., 1].

The AAN algorithm is a one-dimensional, pre-scaled DCT/IDCT algorithm and
is very efficient to compute 2D IDCT. First, the eight input coefficients are prescaled
by eight prescale values that require 8 multiplications. Then the algorithm is applied
to the prescaled coefficients, which requires 5 multiplications and 29 additions for the
transform. Although the 1D AAN algorithms is less efficient than other 1D algorithms,
when applied to 2D 8 × 8 IDCT, this algorithm takes only 64 multiplications for the
pre-scale, and 80 multiplications and 464 additions for the transform, so the overall cost
for one 8 × 8 pixel block is 144 multiplications and 464 additions.

The HAAR transform is one of the simplest wavelet transforms. The HAAR trans-
form is expressed recursively by averaging function and differencing functions, and it
requires only addition (and shifting for efficiency). Therefore, the HAAR transform
algorithm takes only about 244 additions for one 8 × 8 pixel block.

Said and Pearlman [20] have introduced a variant of coding of wavelet coefficients
by successive approximation, that even without arithmetic coding outperforms EZW by
Shapiro [23]. They call it Set Partitioning In Hierarchical Trees (SPIHT). The crucial
parts of their coding process are the way the subsets of the wavelet coefficients are parti-
tioned and the significant information is conveyed. This technique is so fast in execution
that it is used in real-time playback software on the legacy system. Unlike the above two
algorithms (DCT and HAAR), this algorithm performs comparison and assignment op-
erations instead of arithmetic operations. Therefore, it is difficult to compare the SPIHT
algorithm with two algorithms directly, but some experiments show that its execution
time is about 3 times longer than that of the HAAR transform. Table 6 shows the sum-
mary of performance in terms of computation cost for an 8 × 8 pixel block.

Table 6
Comparisons of three transform coding algorithms.

Algorithm Main operation Execution time

DCT(AAN) 80 MUL. and 464 ADD. 10T

HAAR 224 ADD. T

SPIHT Comparisons and assignments 3T

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 193

Figure 2. Entropy coding: Compression ratio & Computation.

Entropy coding. The entropy coding is the basis of a compression algorithm usually
used in a stand-alone compression application [Lelewer and Hirschberg, 13]. The most
famous algorithms in this category are RLE (Run Length Encoding), LZW (Lempel–
Ziv–Welch), Huffman coding, and arithmetic coding. The key concept of RLE and LZW
is to eliminate the duplication of the input string. On the other hand, Huffman coding
and arithmetic coding depend on the occurrence probability of input string. RLE is such
a simple and intuitive method, but its performance is the worst. In the worst case, it
produces data 2 times its original size. In contrast, the performance of arithmetic coding
is remarkable while it requires frequent bit operations and table look up.

Figure 2 displays the correlation of the compression ratio and computation amount
for each algorithm. The X axis of the figure 2 is the amount of computation; the Y

axis is the compression ratio for each entropy coding. RLE is a very simple encoding
algorithm with a 1–2 : 1 compression ratio on average. On the other hand, the Huffman
or arithmetic coding result in a higher compression ratio, but they need more CPU cycles
and IO operations.

To achieve a high compression ratio, some applications adopt arithmetic coding or
a mix of several entropy codings. For instance, MPEG-x uses both run-length coding
and Huffman coding in turn.

Quantization coding. A quantizer maps a signal with a range of values X to a quan-
tized signal with a reduced range of values Y . It should be possible to represent the
quantized signal with fewer bits than the original since the range of possible values is
smaller [Richardson, 19]. Quantization coding methods are usually categorized into
scalar quantization and vector quantization. A scalar quantizer maps one sample of the
input signal to one quantized output value and a vector quantizer maps a group of input
samples (vector) to a group of quantized values (codeword). Scalar quantization is done
by rounding a quotient divided by a quantization step; hence, it is simple but lossy. Vec-
tor quantization depends on the design of the codebook and efficient searching to find an
optimal vector. Obviously, vector quantization is much more CPU-intensive than scalar
quantization.

194 JEONG AND YOO

3.2. Prediction frame coding

Prediction coding. Motion compensated prediction assumes that the current picture
can be locally modeled as a translation of the pictures of some previous time. In most
standards, each picture is divided into blocks of 2n × 2n pixels, called a macroblock.
Each macroblock is predicted from the previous (called P frame) or future frame (called
B frame), by estimating the amount of motion in the macroblock during the frame time
interval.

Unlike transform coding or entropy coding, the performance of prediction coding
is difficult to quantify for comparison. For example, backward prediction coding and
bidirectional prediction coding are different prediction codings, but the latter includes
the former. In other words, the computation requirements and compression ratio increase
together by moving the degree of prediction coding from the simple backward prediction
coding (one frame as a predictor without compensation) to the complicate bidirectional
prediction coding (multiple frames as predictors with compensation).

Motion compensation is effective to produce very low bit streams at the cost of
moderate CPU time and memory space. However, the main operations of motion com-
pensation are memory operations such as block read/write, block copy, and block inter-
polation. These operations possess a system bus. It means that the bandwidth of the sys-
tem bus and the memory access speed are critical for motion compensation performance
as well as CPU power. Motion compensation is also involved in battery consumption in
portable devices. Memory operation consumes more battery power than arithmetic op-
eration, so frequent memory operations drain the battery power quickly [Joo et al., 11].

4. Video/audio codec for low-end cellular phones

In this section, we envision a light-weight video codec (LC) and an audio codec. It can
be used as a transcoder for standard video/audio formats at the server and as a decoder
for low-end cellular phones. Also, we introduce an efficient dithering algorithm for
low-resolution display devices of cellular phones. We first explain how an LC can be
designed, and then we explain our new dithering algorithm.

4.1. Design of profile X

Reference frame coding. The reference frame coding is the basic coding of motion
pictures, but it consumes significant CPU cycles. Therefore, the key point of an LC,
especially, as a decoder for low-powered cellular phones, is that it should consume as
little as possible CPU time. Undoubtedly, the compression ratio is still an important
factor.

Subalgorithms in the previous section are transform coding, quantization coding,
and entropy coding. Figure 3 shows the possible combinations of the subalgorithms
for reference frame coding. We added a subsampling group to reference frame coding
combinations because subsampling is very common and it is treated as a starting point
of coding. We will explain prediction frame coding later.

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 195

Figure 3. Various compression algorithms.

A combination of subsampling, transform coding, quantization coding, and en-
tropy coding leads to a profile, which has different characteristics in terms of computa-
tion requirements and compression ratio. For example, profile 1 (JPEG [Wallace, 29]
or MPEG-x) consists of 4 : 2 : 0 subsampling, AAN transform, scalar quantization, and
Huffman coding, so it focuses on maximizing compression ratio; profile 2 (GIF) focuses
on minimizing computation time. From figure 3, there can be 5 · 4 · 3 · 5 profile combi-
nations, and the computational requirements and compression ratio are summarized as
follows:

• Profile 1: Heavy computation, high compression.

• Profile 2: Light computation, low compression.

• Profile 3: Medium computation, medium compression.

• . . .

• Profile X: Light computation, medium compression.

Profile 1 represents most of the current video standards and has a high compression
ratio, so it can be applicable to high-end cellular phones. On the other hand, profile 2
represents simple image formats such as GIF that are inadequate for video playback due
to a low compression ratio. A question is how to build a profile (let us call it profile X)
from those combinations for an LC. The following explains how each subalgorithm is
chosen. The suitability of the chosen profile for an LC is verified in section 5.

As mentioned in the previous sections 2 and 3, most cellular phones cannot run
a software-based MPEG-4 decoder. Considering table 5, it is clear that the main over-
head comes from IDCT. 80 multiplications and 464 additions generate approximately
one and half thousand cycles on ARM processor, which is equivalent to about 0.42 ms
per block. Hence, IDCT is too heavy for cellular phone processors. On the contrary,
HAAR is famous for light computation [Mulcahy, 17; Wen et al., 30]. Table 6 (Compu-
tation requirements of transform coding) shows that HAAR transform coding takes 1/10

2 0.4 ms = 0.1 ms (the elapsed time for one and a half thousand cycles on the 13.5 MHz ARM7TDMI)∗
(100%/25% (available CPU time)).

196 JEONG AND YOO

times of the IDCT computation time, and therefore it is a good candidate of profile X. As
transform coding is the most critical factor of all subalgorithms for the decoding perfor-
mance, the “lightness” is very crucial. Especially, HAAR is a process of averaging and
differencing which is also a kind of very light processing in the viewpoint of processor
logic, so it has been widely used as a software real-time codec for off-the-shelf proces-
sors since the mid 1990s. Detailed performance effects of transform functions in actual
video decoding will be shown in section 5.

Next, the profile X codec adopts a scalar quantization coding as a quantization
coding. Since profile X uses a block-based coding and a transform coding algorithm,
scalar quantization needs to boost the entropy coding performance by controlling the
step size. In addition, scalar quantization coding has a merit in implementation and
computational performance as compared with vector quantization coding because it can
be implemented by table look-up. Its compression ratio depends on a quantization table
as well, which is a useful tool for managing bit-rates.

In the case of entropy coding, the computational pattern as well as algorithmic
complexity is important. Although Huffman decoding can be done by table look-up, it
is possible for a processor to be overburdened due to numerous bit operations. As shown
in table 1, ARM7TDMI has no CPU cache. Therefore, looking up a codeword table
with an input symbol generates many memory references, which degrades the system
performance and drains the battery quickly. For this reason, we adopt a modified RLE
algorithm as entropy coding of profile X. As it is well known, RLE has a shortcoming
regarding compression ratio; especially in the case that the run length of its elements is
frequently 1.

To overcome this drawback, we added a normalization step into profile X. The
normalization step is inserted after the quantization coding phase and before the entropy
phase to boost the RLE coding power. Coefficients of AC terms computed by transform
coding are normalized in the manner that the MSB (Most Significant Bit) of AC coeffi-
cients can be used as a tag bit of succession. That is, if the MSB is set, the coded value is
a pair of run length and AC coefficient. Otherwise, it is just an AC coefficient. In the nor-
malization step, coefficients can be distorted. However, as we normalize AC coefficients
that are odd numbers and are greater than 32 while it is hard to find an AC coefficient
that is greater than 32 actually, quality degradation by normalization is less than 1–2 dB.
Though there is a normalized AC coefficient, quality degradation is negligible to the
human eye, because an image is displayed on the cellular phone’s LCD. Under the cir-
cumstance that the color depth is less than or equal to 16 bits and the dot brightness of a
cellular phone’s LCD is low, it is hard to notice a very slight color difference.

Summarily, profile X that consists of 4 : 2 : 0 subsampling, HAAR transform, scalar
quantization, and modified RLE seems to be a good candidate of the reference frame
coding for low-end cellular phones because its combination consists of subalgorithms of
the low computation. We will verify the suitability of the implementation of profile X in
actual low-end cellular phones.

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 197

Prediction frame coding. Now, we specify profile X for the prediction frame coding.
As pointed out in the previous section, the performance of prediction frame coding is
related with the memory system (e.g., memory bus bandwidth, memory access speed)
as well as the processing power, which means memory-intensive. In the case of low-end
cellular phones, a memory bus line is 8 bits and the speed of memory access is relatively
slow (in real cellular phones, the memory fetch speed is much slower than the CPU ALU
instruction speed). Therefore, a sophisticated prediction coding algorithm takes longer
time to execute.

Furthermore, in a real situation, since it is impossible to play video clips at 24 fr/s
or higher on a cellular phone due to lack of CPU power, a time interval of interframe is
relatively large. For this reason, the compression contributed by prediction frame coding
is not significant. That is to say, an elaborate prediction algorithm fails to achieve very
low bit rates because many blocks are “mismatch”. Even though a block is “match”, it is
possible to produce a significant size of error term data (predicted spatial data) for com-
pensation that makes the compression ratio low and causes excessive memory operations
on the decoding side. In this case, two heavy subalgorithms, inverse transform for error
term data and pixel compensation with error term data, are required (table 5). Under
the cellular phone environment, it is possible for a sophisticated prediction algorithm to
overburden the processor while resulting in low compression.

Specifically, the effectiveness of most subalgorithms of prediction frame coding
is related with block “match” performance. Let the cost of calculating the transform
coding for the I-block be TCost(x), the cost for the transform decoding for error term
be TECost(x), the cost for the motion vector decoding be MCost(x), and the cost for
the pixel compensation be ICost(x). Similarly, let the effect on compression ratio for the
transform coding for the I-block be TEffect(x), the effect for the transform coding for er-
ror term be TEEffect(x), the effect for the motion vector decoding be MEffect(x), where
the probability of a block “match” is p(x). The decoding cost for one block is expressed
as DCost(x)3 = TCost(x)·(1−p(x))+(TECost(x)+ICost(x)+MCost(x))·p(x), and the
effect is expressed as DEffect(x)4 = TEffect(x)·(1−p(x))+(TEEffect(x)+MEffect(x))

× p(x). If p(x) is close to 1 and the size of the error term is small, TECost(x) and
ICost(x) (TECost(x) and ICost(x) are 0 for perfect “match”) are small and TEEffect(x)

is big; otherwise, TECost(x) and ICost(x) are big and TEEffect(x) is small. In the cel-
lular phone system, TECost(x) and ICost(x) are very high because of relatively small
p(x) and slow memory access speed. Actually, through the observation of some tests,
we found that when the frame rate is below 15, p(x) is so small that the prediction frame
coding with the error term coding degrades the overall system performance and drains
battery power very quickly. Therefore, the profile X video codec adopts the simple back-
ward prediction coding per block with vector coding and without error term coding, that
is, TECost(x) and ICost(x) are 0 by sacrificing TEEffect(x).

3 TCost(x) > TECost(x) > ICost(x) > MCost(x) in common cases, and TCost(x) and MCost(x) are
independent on p(x) and the size of error term.

4 TEffect(x) < TEEfect(x) < MEffect(x) in common cases.

198 JEONG AND YOO

Figure 4. Spectrum of correlation between computation and compression.

Profile X. Figure 4 illustrates the spectrum of correlation between the computation re-
quirements and the compression ratio, and shows the position where profile X is located.
As well known, most of video standards such as MPEG-4 are positioned in the left-top
corner targeting for high performance cellular phones with a media coprocessor. On
the contrary, GIF that is of still image format is used for early cellular phones that are
too weak to process moving pictures. In summary, profile X, one of several combina-
tions of subcoding algorithms, adapts the compression ratio to the processing power for
mid-tier/low-end cellular phones.

4.2. Dithering

A dithering algorithm [Ulichney, 27] is usually applied when the color depth of the
target display device is below 12 bits. Most cellular phones today have a low resolution
display whose color depth varies from 4-level gray to 16 bits color. It is obvious that low-
end LCD (below 12 bits) devices require dithering, but, the 16 bits LCD on a cellular
phone also needs dithering because of mobile LCD peculiarity. Therefore, dithering
is indispensable. Figure 5 illustrates the common rendering process. Since dithering is
required for the human eye (it may be a kind of noise in the viewpoint of a computer), it is
applied at the last phase of rendering, that is, just before displaying the image on LCD.
Most dithering algorithms are categorized into two groups. One group is type A that
dithers a pixel with its own value and its coordinates (some algorithms use the average
value of an image). Type A algorithms are simple and easy to use, but these produce
moderate image quality. ORDERED dithering is a representative algorithm of type A.
On the other hand, type B is known as diffusing algorithm. It means that the target pixel
value is diffused into its neighboring pixels and dithered. Compared with type A, type B
requires more complex arithmetic computation including floating point arithmetic and
memory references to diffuse the pixel value. However, it produces graceful images with
a small number of colors. Figure 5 also illustrates the difference of two dithering groups.

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 199

Figure 5. Common rendering process and two dithering groups.

Because dithering algorithms are applied for all pixels of each frame, any dither-
ing algorithm overburdens a mobile processor. Through experiments, we found that the
frame rate with ORDERED dithering is half of that without dithering. To address this
performance issue, we characterized each phase in figure 5 with the following observa-
tions:

1. Pixel value (YUV) is calculated at the inverse transform phase.

2. Pixel coordinates are known at the inverse transform phase.

3. Cropping is done after inverse transform phase for clamping YUV value.

4. Cropping can be done by comparison and assignment or by a table look-up opera-
tion.

5. Type A dithering algorithms require pixel value and its coordinates to dither.

6. Type A dithering can be done by comparison and assignment or by a table look-up
operation.

In the conventional rendering, since the color space conversion phase is located
between the cropping phase and the dithering phase, a cropping table and a dithering
table cannot be merged. Hence, two kinds of table look-up operations are required. If
we relocate the dithering phase between the cropping phase and the color space con-
version phase, then we can merge the cropping table and the dithering table (we call it
out-of-order dithering). In other words, the original decoding phases are expressed as a
display pixel Px,y = Dither(RGB(Cropping(T −1(Q−1(Cn))))), where RGB is a func-
tion converting YUV to RGB, T is a transform coding, Q is a quantization function, and
Cn is coded bits. Out-of-order dithering is to reorder the rendering functions like this:
P ′

x,y = RGB(Dither(Cropping(T −1(Q−1(Cn))))). Figure 6 illustrates the comparison of
the original rendering process and the out-of-order dithering process.

200 JEONG AND YOO

Cropping(x) =



x (0 � x � 255),
0 (x < 0),
255 (x > 255),

Dithered_cropping(x) =



Dither(x) (0 � x � 255),
Dither(0) (x < 0),
Dither(255) (x > 255).

Figure 6. Out-of-order dithering.

Out-of-order dithering has good and bad points. A good point is that the dither-
ing function, Dither(x) and the cropping function, Cropping(x) are combined into one
table, Dither-Cropping(x). By doing so, the dithering computation time can be almost
absorbed into one table look-up operation time; hence, the frame rate with dithering is
almost equal to that without dithering. Also, the data size of dithering is usually 12 bits
or smaller, so color space conversion, RGB(x) can be done by a table look-up operation,
which is a further computational merit. In a 4069-color LCD, the above 3 tables can be
merged into one table of reasonable size. In addition, brightness adjustment or gamma
correction can be done by a color table, so additional computation is not required for
color adjustments.

However, a bad point is that the final pixel values of out-of-order dithering, P ′
x,y is

not equal to those of the traditional dithering, Px,y . The difference between P ′
x,y and Px,y

is due to the color space conversion (floating point rounding error) and YUV dithering (in
color space conversion, dithering Y affects R, G, and B at the same time). We measured
that the difference varies from −20 to 20. In the worst case (the difference is −20
or 20), the quality degradation can be noticeable on 24 bits, but it is not distinguishable
to the human eye on low resolution LCD because of following reasons. Suppose that an
image is rasterized on a 12 bits LCD, 8 bits dithered pixel component value is shifted
right by 4 bits, so its difference gets smaller. In addition, the reconstructed R, G, and
B values from the dithered Y , U , and V can be calculated in advance and stored in a
color table in order to reduce the difference. Therefore, the image quality of out-of-
order dithering can be much the same with the quality of the original dithering on low
resolution LCD.

Figure 7 is an illustration of reconstructed images, and shows the quality of out-of-
order dithering originated from the ORDERED dithering. The left images are of 24 bits,
and the right images are of out-of-order dithered 12 bits. In the “Description” column
of figure 7, “Color count” means the number of colors to present images for each. For
example, “2412, 59” of the first row in figure 7 is the number of colors for a 24 bits

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 201

Figure 7. Out-of-order dithering images.

image and for a 12 bits dithered image, respectively. As shown in figure 7, there is no
noticeable artifact on out-of-order dithered images.

4.3. Audio codec

Before designing the audio codec, we surveyed audio codecs suitable for cellular phones.
Some focus on audio quality and others are superior in compression. Although audio
codecs generally consume less processor cycles for decoding than video codecs, they
still require moderate processor time. All cellular phones have a hardware audio codec
(vocoder) such as EVRC (Enhanced Variable Rate Codec) for a CDMA phone. Because
an audio codec was implemented as a hardware chip, it does not require additional core
processor power. Moreover, audio codecs for a cellular phone has strength in compres-
sion and bit error. For these reasons, we decided to use a hardware vocoder as our audio
codec.

In cellular phone environment, the vocoder generates an interrupt periodically
(50 ms in case of the CDMA phones) to sound the voice. When an interrupt is gen-
erated, the audio interrupt handler is called. At this time, the interrupt handler checks
the header of the encoded voice data and pushes to the vocoder’s buffer queue, and then
the vocoder sounds the voice. Therefore, to decode and play audio data, a player just
tosses the encoded audio data to the interrupt handler. That is to say, we use a new in-
terrupt handler. A new interrupt handler reads the encoded data, manipulates the header,
and calls the original interrupt handler. Figure 8 illustrates an audio decoding process.

This mechanism makes the player architecture simple, and it is easy to synchronize
with video data in a non-preemptive system without time drifting. Synchronization will
be explained in the following section. GSM phones also support similar audio mecha-
nisms.

202 JEONG AND YOO

Figure 8. Audio codec processing.

5. Implementation and experiments

This section explains how profile X and the out-of-order dithering are implemented in an
actual cellular phone software environment. Our implementation is done on a Samsung
CDMA phone, and the performance is measured with our implementation.

5.1. Phone software environments

Operating systems for a cellular phone are embedded, non-preemptive, and single
threaded, and they adopt a priority-based task scheduling policy. For simplicity and
software lightness, they do not have sophisticated subsystems such as a virtual memory
system, and use very simplified subsystems. REX that operates on CDMA phones by
Qualcomm is an example of OS for cellular phone.

Because of the non-preemptive and single-threaded nature, OS for cellular phone
can not take a processor resource by force from a task that is currently running, so the
task occupying a processor should yield to a next task within a given time quantum
voluntarily; otherwise, the WATCHDOG exception that guards and resets the system
triggers when one task holds a processor beyond the allowed time quantum. This is
because a cellular phone always needs to execute some tasks periodically in order to
communicate with a base station.

As the main job of the OS for cellular phones is interrupt handling, there needs
a special task called the UI task for managing the phone system and its states. The UI
task runs regularly and checks the system states, for example, which key is pressed,
which task should be launched, etc. That is, the UI task acts as a system shell of a
regular OS, and it does specific processing that the state says. When an event happens,
the event handler simply change the state, at first, by setting or clearing the UI task’s
flags, and then the UI task starts an appropriate task by interpreting the state when it is
scheduled. Therefore, most events are processed asynchronously, and the UI task can
access most phone system resources for task management. The UI task has most system
libraries such as file system, network system, LCD module, audio module, etc. Figure 9
illustrates the overall phone software architecture.

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 203

Figure 9. Cellular phone software architecture.

n∑
k=i

DT(PKTk)+MaxDT < WT,




DT: Decoding time for a packet,
PKTk: kth packet,
MaxDT: Predefined maximum decoding time for a packet,
WT: WATCHDOG time.

Figure 10. Decoding time for a given time quantum.

5.2. Synchronization

Due to the absence of a multi-threading mechanism in the phone OS, the synchronization
between the video and audio is tricky. Our solution in the implementation for synchro-
nization is to allow partial decoding of a frame. When the player starts decoding, the
video decoder decodes a group of small sized-encoded data (called packet – PKT) for
a given time quantum (WT) and yields the processor. If the video decoder tries to de-
code a whole frame, it is possible that the WATCHDOG exception occurs. To avoid
the WATCHDOG exception, our player keeps track of the decoding time and yields the
processor within a time quantum. Figure 10 is a formula to avoid the WATCHDOG
exception.

The meaning of figure 10 is as follows: The video decoder decodes packets from
the ith packet to the nth packet. If the video decoder cannot finish decoding a whole
frame within a time quantum or the sum of decoding time from the ith packet to the
(n + 1)th packet is greater than a time quantum (actually, as the video decoder does
not decode the (n + 1)th packet yet, its decoding time is replaced with MaxDT), then
the video decoder stops decoding and yields the processor. At the next turn, the video
decoder resumes decoding the (n+1)th packet. After decoding, the video decoder inserts
a decoded frame into a frame list.

The OS for a cellular phone does not offer a fine-grained timer, so if the player
clock used for synchronization is updated by the system timer, the player clock is not
reliable. In order to update the player clock accurately, we use the audio interrupt that
occurs at a fixed time interval as mentioned in section 4.3. When an audio interrupt is

204 JEONG AND YOO

Video decoder { // Timer Handler
if (Read_Clock_AND_Test) {

Display_Frame;
Yield_Processor;

}
Time_Quantum = MaxDT;
while (Time_Quantum < WatchDog) {

Decode_One_Packet;
if (Build_Frame) {

Insert_Frame;
Yield_Processor;

}
Update_Timer_Quantum;

}
}

Audio decoder { // EVRC Interrupt handler
Update_Clock(TIME_INTERVAL);
Read_Data;
Attach_EVRC_Header;
Call_Original_EVRC_Handler

}

Figure 11. Pseudo code for audio and video decoders.

Figure 12. Overall architecture of profile X player.

triggered, the audio interrupt handler updates the player clock (add the time interval).
Figure 11 illustrates the pseudo code of the decoding and interrupt handler.

For synchronization, the video decoder decodes packets and checks the present
time stamp of decoded frames with the player clock for displaying periodically, and the
audio decoder manipulates the audio data as well as updating the player clock. By doing
so, video and audio is well synchronized without time drifting.

We implement profile X player as a library and attach it to the UI task. Figure 12
shows the overall player architecture. The UI task runs periodically by a timer. When
the UI task runs, the video decoder decodes packets that are read from the Demux, and
the Renderer (actually, the video decoder) checks the present time stamp of the topmost

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 205

image from a decoded image list with the player clock, and then displays the image.
In the case of audio, upon each interrupt, OS calls the audio interrupt handler (audio
decoder) that is a function of UI task, and the audio decoder passes the audio packets to
vocoder with updating the player clock.

5.3. Profile X performance

The performance of profile X is compared with the H.263 baseline codec and the
MPEG-4 simple profile codec. The H.263 decoder is based on the reference code and
runs on a PC, while the MPEG-4 decoder is highly optimized and runs on an ARM
processor. The H.263 decoder is compared with the profile X decoder on a PC system,
and the MPEG-4 decoder is compared with the profile X decoder on an ARM system.
The image quality is measured along with computation requirements and compression
ratio. It is not easy to measure the CPU performance of a real cellular phone because of
the absence of reliable performance counter tools, so we use the ARM profiler to collect
meaningful performance data that are the number of instructions and the number of cy-
cles for a section of codes or the whole program. With these performance counters, we
can estimate the actual performance from the CPU clock speed (e.g., 20 MHz ARM9
CPU executes 20,000 cycles/ms). Most core processors of embedded devices including
cellular phones are ARM CPU or its variants. Therefore, the number of instructions and
cycles (CPU instruction, not high level language instruction) is meaningful to other thin
devices.

We carry 4 experiments. Three experiments are about the video decoders and the
last one is about the rendering method. The size of test clips is QCIF, and the quality
comparisons are done in 24 bits color in case of video decoder experiments. Table 7
shows 4 experiment parameters.

Table 8 and figure 13 show the results of experiment 1. Table 8 shows the “light-
ness” of profile X clearly while the PSNR of “ma.lc” is inferior to that of “ma.263” by
4 dB with a similar compression ratio. profile X decodes the same bit rate clip at the
cost of 1/414 (115 us/47724 us) times while sacrificing 4 dB PSNR. The performance
difference between the two decoders mainly comes from inverse transform (DCT vs.

Table 7
Experiment parameters.

No. Targets Clip name Compression ratio (PSNR) Test platform

Experiment 1 H.263 ma.263 139 : 1 (variable) P-3 750 MHz
Profile X ma.lc 141 : 1 (variable)

Experiment 2 MPEG-4 ma.mp4 1130 : 1 (35 dB) ARM processor
Profile X ma.lc 141 : 1 (35 dB)

Experiment 3 Profile X ma.lc 141 : 1 (35 dB) ARM processor
Profile X cf.lc 20 : 1 (35 dB)

Experiment 4 Normal rendering N/A N/A ARM processor
Out-of-order N/A N/A

206 JEONG AND YOO

Table 8
Performance result of “Miss America”.

Codec *CPU (us/fr) PSNR (dB) Bits/fr Ratio

Profile X 115 32.74 4304 141 : 1
H.263 **47724 36.57 4369 139 : 1

* Pentium III 750 MHz, 512 MB RAM.
** It depends on implementation.

Figure 13. Comparison of CPU usage and PSNR between profile X (ma.lc) and H.263 (ma.263).

HAAR), entropy decoding (Huffman vs. modified RLE), and error term decoding. Es-
pecially, the inverse transform function makes a major difference. The IDCT function
requires significant CPU time among several decoding subfunctions, while the inverse
HAAR function is not heavy compared with other profile X subfunctions. Besides, the
IDCT function is called frequently for I typed block and error term decoding. In the case
of quality, 4 dB of PSNR is a big number, but if reconstructed images are displayed on a
low resolution device like a cellular phone LCD, the quality degradation is blurred, and
the quality difference is quite small to the human eye.

In figure 13, the performance gap is getting larger (profile X is better) as the bit rate
increases. In the case of H.263, if the bit rate increases, the number of I typed blocks is
bigger (many IDCT) and the length of run is shorter (many table look-up for Huffman
decoding) due to fine quantization step sizes. Figure 13 also shows that the gap of image
quality is getting smaller as the bit rate is increasing.

Figure 14 illustrates the results of MPEG-4 and profile X performance on an ARM
processor, experiment 2. In this experiment, we qualify the adaptation of the computa-
tion at the same image quality. As shown in figure 14, “ma.mp4” requires about 354,590
instructions (587,140 cycles) per frame for decoding, but “ma.lc” requires about 7,800
instructions (13,600 cycles) per frame. Though the tested MPEG-4 decoder is highly op-
timized, it consumes the CPU time approximately 45 times more than profile X, which
means that the MPEG-4 decoder is difficult to run on cellular phones but that the pro-
file X is well adapted for cellular phones. In other words, profile X greatly reduces the
computational requirements by adapting the compression ratio gracefully. In the case of
the MPEG-4, the pure decoding frame rate for CDMA-2000 cellular phones (13.5 MHz

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 207

Figure 14. Performance comparison: profile X (ma.lc) and MPEG-4 (ma.mp4).

Figure 15. Performance comparison: “ma.lc” and “cf.lc”.

ARM7TDMI) is at most 5.75 fr/s, and the frame rate for playback is much lower due to
the rendering computation time.

Figure 15 illustrates the number of thumb mode instructions and cycles per frame,
experiment 3. As the compression ratios of two clips imply, “cf.lc” has more reference
blocks than “ma.lc” because “cf.lc” has less predicted frames. As a result, “ma.lc” re-
quires about 7,800 instructions (13,600 cycles) per frame, while “cf.lc” requires about
159,000 instructions (276,000 cycles) per frame. Like other codecs, profile X also shows
that the higher the clip is compressed, the smaller the number of instructions is needed at
the same quality. The main reasons are (1) the energy compaction property of transform
coding, and (2) the effects of prediction frame coding.

To see the performance enhancement of out-of-order dithering, we measure the
numbers of THUMB mode instructions and cycles for processing one pixel. These two
rendering methods yield 12 bits-dithered pixels. In the case of the conventional method,
the color space conversion function is a multiplierless version [Gordon et al., 7], and
the dithering algorithm is the ORDERED dithering implemented by table look-up op-
erations. As shown in table 9, the conventional rendering method requires significant
amount of computation6 in spite of highly efficient implementation. However, the out-

5 5.7 = (13,500,000/587,140) · 0.25 (available CPU power).
6 49 instructions/pixel = 827,904 (49 · 176 · 144 · 2/3) instructions/frame (4 : 2 : 0 subsampling: 2/3).

208 JEONG AND YOO

Table 9
Costs of two rendering methods for processing one pixel.

Rendering method Instructions Cycles

Conventional rendering 49 86
Out-of-order dithered rendering 14 37

Unit: THUMB mode instructions and cycles.

Figure 16. Profile X player (12 bits LCD) for SCH-X430.

of-order dithering method requires only 14 instructions that are about 29% of the con-
ventional way. In case of the quality, a metric such as the PSNR for quality comparison
is not accurate because of dithering. The quality of dithered images is determined by
human-visual-system as well as by complicate metrics [Yu and Parker, 32]. For exam-
ple, suppose a dithering matrix (A) and another matrix (B) for ORDERED dithering,
and B is rotated some degrees from A. After being dithered by two matrixes, the two
images are different in terms of a certain metric, but both are well dithered and come
to the same thing to the human eye. Therefore, determining the quality improvement of
the two rendering methods by a numerical metric comparison is not accurate. Instead,
subjective tests are preferable. Actual images are shown in figures 7 and 16.

Finally, considering the number of instructions for decoding (including rendering)
and the available CPU power mentioned in section 2, we can estimate the performance
of profile X for a real cellular phone and calculate the frame rate approximately. Ac-
tually, we implemented profile X with EVRC codec on a CDMA-2000 cellular phone
– SCH-X430. The Qualcomm chipset of SCH-X430 is MSM-5000 whose core proces-
sor is ARM7TDMI operating at 13.5 MHz clock speed in the idle state. We saw that a
“normal” (“normal” means that it can do a call service) SCH-X430 plays a SQCIF-sized
clip (about 20 : 1 compression ratio – “cf.lc”) at 6–8 fr/s with 12 bits color dithering.
Figure 16 is snapshots of our player on SCH-X430.

SOFTWARE-BASED VIDEO/AUDIO PROCESSING 209

6. Conclusion

It is generally believed that video processing on cellular phones is only possible with
high-powered smart phones. It is because existing video coding standards emphasize
the compression ratio and quality so that huge computation is required. Therefore, a
low-powered processor cannot decode them by software. This paper attempts to show
that software-based video processing is indeed possible even with low-powered cellular
phones. It is done by designing a Light-weight Codec (LC) and an efficient rendering
method. Specifically, an LC is designed by choosing a profile that balances computa-
tional requirements and compression ratio. The new rendering method is called out-of
order dithering, and it alleviates significantly the conventional computation overhead
for displaying. The LC and out-of-order dithering are implemented in an actual cellu-
lar phone environment, and their performance is measured. We measured that LC with
out-of-order dithering needs about 20,000 instructions to play a 140 : 1 compressed clip
(SQCIF-sized “Miss America” clip). The experiment results imply that our approach
can be applied to ubiquitous mobile devices to come in the future that are equipped with
low-powered processors.

References

[1] Y. Arai, T. Agui and M. Nakajima, A fast DCT-SQ scheme for images, Transactions of IEICE 71
(1988) 1095–1097.

[2] ARM, http://www.arm.com.
[3] P.A.A. Assuncao and M. Ghanbari, Transcoding of MPEG-2 video in the frequency domain, in: Proc.

of IEEE Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 4 (April 1997)
pp. 2633–2636.

[4] Coding of audio-visual objects, part 2: visual, ISO/IEC, 14496-2 (December 1999).
[5] R. Dugad and N. Ahuja, A fast scheme for downsampling and upsampling in the DCT domain, in:

Proc. of IEEE Internat. Conf. on Image Processing (ICIP), Vol. 2 (October 1999) pp. 909–913.
[6] E. Feig and S. Winograd, Fast algorithms for the discrete cosine transform, IEEE Transactions on

Signal Processing 40 (1992) 2174–2193.
[7] B. Gordon, N. Ghaddha and T.H. Meng, Low-power multiplierless YUV to RGB converter bases

on human vision perception, invited chapter, in: Low Power/Low Voltage Integrated Circuits and
Systems, ed. E. Sanchez-Sinencio (IEEE Press, New York, 1994) pp. 408–417.

[8] A. Graps, An introduction to wavelets, IEEE Computational Science and Engineering 2(2) (1995)
50–61.

[9] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret and J. Rubas, Dynamic adaptation in an image
transcoding proxy for mobile Web browsing, IEEE Personal Communications Magazine (1998) 8–17.

[10] J.-H. Jeong and C. Yoo, A server-centric streaming model, in: Proc. of NOSSDAV 2000 (June 2000)
pp. 25–34.

[11] Y. Joo, Y. Choi, H. Shim, H.G. Lee, K. Kim and N. Chang, Energy exploration and reduction of
SDRAM memory systems, in: Proc. of ACM Conf. on Design Automation, USA (2002) pp. 892–897.

[12] D. Legall, MPEG – A video compression standard for multimedia applications, Communications of
the ACM 34(4) (1991) 46–48.

[13] D.A. Lelewer and D.S. Hirschberg, Data Compression, ACM Computing (Springer, Heidelberg/New
York, 1989).

210 JEONG AND YOO

[14] C. Loeffler, A. Ligtenberg and C.S. Moschytz, Practical fast 1D DCT algotithm with eleven multipli-
cations, in: Proc. of ICASSP (1989) pp. 988–991.

[15] N. Merhav and V. Bhaskaran, Fast algorithms for DCT domain image down sampling and for inverse
motion compensation, IEEE Transactions on Circuits and Systems Video Technology 7(3) (1997)
468–476.

[16] D.G. Morrison, M.E. Nilson and M. Ghabari, Reduction of the bit-rate of compressed video while
in its coded form, in: Proc. of Internat. Packet Video Workshop, Portland, OR (September 1994)
pp. D17.1–17.4.

[17] C. Mulcahy, Image compression using the Haar wavelet transform, Spelman Science and Mathematics
Journal 1(1) (1997) 22–31.

[18] Qualcomm Corp., http://www.qualcomm.com.
[19] I.E.G. Richardson, H.264 and MPEG-4 Video Compression (Wiley, New York, 2003).
[20] A. Said and W.A. Pearlman, A new fast and efficient image codec based on set partitioning in hi-

erarchical trees, IEEE Transactions on Circuits and Systems for Video Technology 6 (June 1996)
243–250.

[21] Samsung Electronics Co., http://www.sec.co.kr.
[22] T. Shanableh and M. Ghanbari, Heterogeneous video transcoding to lower spatio-temporal resolutions

and different encoding formats, IEEE Transactions on Multimedia 2(2) (2000) 101–110.
[23] J.M. Shapiro, Embedded image coding using zero trees of wavelet coefficients, IEEE Transactions on

Signal Processing 41(12) (1993) 3445–3462.
[24] SK Telecom, http://www.sktelecom.com.
[25] B. Sostawa, T. Dannemann and J. Speidel, DSP-based transcoding of digital video signals with

MPEG-2 format, IEEE Transactions on Consumer Electronics 46(2) (2000) 358–362.
[26] R. Talluri, Error-resilient video coding in the ISO MPEG-4 standard, IEEE Communication Magazine

36 (June 1998) 112–119.
[27] R. Ulichney, A review of halftoning techniques, Proceedings of SPIE 3963 (2000) 378–391.
[28] Video coding for low bit rate communication, ITU-T Recommendation H.263, version 1 (November

1995), version 2 (January 1998), version 3 (November 2000).
[29] G.K. Wallace, The JPEG still picture compression standard, IEEE Transactions on Computer Elec-

tronics 38(1) (1991) 18–34.
[30] J. Wen, P. Meshkat and J. Villasenor, Structured trees for lossless coding of quantized wavelet coeffi-

cients, in: Proc. of Asilomar Conf. on Signals, Systems, and Computers (November 1996) pp. 3–6.
[31] J. Youn and M. Sun, Motion vector refinement for high performance transcoding, IEEE Transactions

on Multimedia 1(1) (1999) 30–40.
[32] Q. Yu and K.J. Parker, Quality issues in blue noise halftoning, Proceedings of SPIE 3300 (1998)

376–385.
[33] W. Zhu, K. Yang and M. Beacken, CIF-to-QCIF video bitstream down-conversion in the DCT domain,

Bell Labs Technical Journal 3(3) (1998) 21–29.

